Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Learning Local models, TRPO,
Imitating Optimal Controllers

Katerina Fragkiadaki

| ast lecture

lterative-Linear Quadratic Regulator for continuous control: We
assumed:

- known dynamics model

- we could measure the reward (state x was fully observed, thus
also the distance from a desired state x*)

and we showed a local optimization process that would achieve the
desired task from a specific initial state x_0 using iterative linear
approximations of dynamics and quadratic approximations for the
cost.

Learning global dynamics models using Neural Networks as the
function class

This lecture

* Learning local dynamics models

* i-LQR with learn local models

* Trust region constraint for policy optimization: TRPO and i-LQR
* Learning general policies by imitating i-LQR local controllers

DAGGER

Guided policy search

Next lecture

 Differentiable model-based reinforcement learning
* Recurrent networks and optimal control

* Back-propagate directly to the policy using temporal unfolding-
differentiable dynamics- back propagate through discrete actions
(stochastic sampling on the forward pass), or through continuous
actions (re-paramertization trick)

(Locally) Optimal Control

T
min Zc(azt,ut) s.t. & = fae_1,us_1)

Ul,..., uT
t=1

min c(x1,ur) + c(f(x1,ur), u2) + -+ c(f(f(...)...), ur)

Ul,...,uT

Differentiate and optimize.

Ndd't'df df dc dc
ee erivales. dazt’dut’dazt’dut

In case f is linear and ¢ quadratic, then we can using dynamic
programming and get optimal solution!-> i-LQR, MPC extensions

't we knew the dynamics

T
min Zc(xt,ut) s.t. x¢ = f(X¢—1,Up—1)

ui,...,ur
t=1

min c(xy,uy) +c(f(xg,u1),as) +---+c(f(f(...)...),ur)

ul,...,ur

Global dynamics model would do. But we saw they are hard to fit/get them to
generalize.

But if you use i-LQR, in any case it is a local optimization method, around
reference trajectories! You don’t need dynamics everywhere (at each iteration),
only around the reference trajectory: ¢, u:!

(Time varying) Local models of dynamics! Local linear approximations!

Time varying linear dynamics

A d *
reference trajectory Ty, Uz, t = 1,..., 7

{ AL

— —

Time varying linear dynamics

reference trajectory Ty, Uz, t = 1,..., 7
learn time varying linear dynamics: A,, B, /</

0o T

Time varying linear dynamics

reference trajectory Ty, Uz, t = 1,..., 7
learn time varying linear dynamics: A,, B, /</

0o T

How do | get the data to fit my linear dynamics at each time step?

We execute the controller u; at state '+ to explore how the world
works in the vicinity of the reference trajectory!

Which controller?

Which controller to collect samples with”

* We need a stochastic controller! Why?

Which controller to collect samples with”

* We need a stochastic controller! Why?
 Here is a good guess: add some noise to the output of iLQR:

p(ug|xs) = N(Ke(xy — X¢) + ke + 0z, 2¢)

Which controller to collect samples with”

« We need a stochastic controller! Why?
* Here is a good guess: add some noise to the output of iLQR:

p(ug|xs) = N(Ke(xy — X¢) + ke + 0z, 2¢)

* |t turns out that setting Xt = Qa,, solves the following
maximum entropy control problem:

: T
min) ;1 Eix, uy)~op(xe,ug) [€(Xe, we) —=H (p(ag]xq)))

Guided Policy Search, Levine and Colton 2013

Which controller to collect samples with”

« We need a stochastic controller! Why?
* Here is a good guess: add some noise to the output of iLQR:

p(ug|xs) = N(Ke(xy — X¢) + ke + 0z, 2¢)

* |t turns out that setting Xt = Qa,, solves the following
maximum entropy control problem:

: T
min) ;1 Eix, uy)~op(xe,ug) [€(Xe, we) —=H (p(ag]xq)))

 Remember, cost to go:

1[x 1" X x|
Q(xt,ut)constJr—[ui] Qt[uz]Jr[t] o

2 Uy

 The above controller strikes the right balance between

minimizing the cost and maximize exploration
Guided Policy Search, Levine and Colton 2013

Which controller to collect samples with”

: T
min) ;1 Eix, u,)~p(xe,up) (€%, 0e) —=H(p(ug|xq)))

Guided Policy Search, Levine and Colton 2013

e Act as randomly as possible while minimizing the cost! What does this
remind us of?

Which controller to collect samples with”

: T
min) ;1 Eix, u,)~p(xe,up) (€%, 0e) —=H(p(ug|xq)))

Guided Policy Search, Levine and Colton 2013

e Act as randomly as possible while minimizing the cost! What does this
remind us of?

 MaxEntlOC: be as random as possible while matching the feature
counts of demonstrated paths

maX—ZP)log P(t

Z P fdem

Time varying linear dynamics

We iteratively fit dynamics and update the policy. Why such iteration is
important?

So that the space (state, action distribution) our dynamics are estimated is
similar to the one our policy visits (last lecture).

e I
run p(u|x;)
on robot
collect D = {7;}
\ J
P(Xep1]xe,up) = N(f(x¢,14), %)
next fit dynamics
f(xe,mp) = Agxy + By iteration M
p(Xe+1Xe, ue) 2”@'
df df ==
A, =—"— B,=-—"—

- dXt dut

/\
\ IMProve @ -
AN plug|xy) 7

Fitting time varying linear dynamics

-+ Can we further improve sample complexity? Right now each
sample (z:, u¢, T¢4+1) contributes in one linear model fitting.

- Instead of linear regression use Bayesian linear regression!

-

IIMPIOVe g @
p(ug|x¢) :

e I
run p(ug|x;)
on robot
collect D = {7;}
\ J
p(Xey1|xe, 1) = N(f (x4, ut), X)
next fit dynamics
f(xe, 1) = Ayxy + Bruy iteration Y
7\ 4188y Ut
Al
T %, YT du, @

.

Bayesian Linear regression

Let 8 be the weights of our linear regression model:

1 1

y=XB+e €~N00°) p(y| X, B;02) =

Bayesian Linear regression

Let 8 be the weights of our linear regression model:

1 1

=X . i ~ N(0,02). nl: - 2) — e lay — 2
y=XB+e e (0,07) p(y| X, B;0?) (QWaz)n/gexp(ol X,3||)

By maximizing the log likelihood we get the MLE solution for the weights:

B: (XTX)—lXTy BNN('B,U?‘(XTX)—I)

Bayesian Linear regression

Let 8 be the weights of our linear regression model:

1 1 9
(.27r0_2)n/2 exp (—.2?”3/ — X)

By maximizing the log likelihood we get the MLE solution for the weights:

y=XB+e €~N00°) p(y| X, B;02) =

B: (XTX)—lXTy BNN('B’O_?.(XTX)—I)

What if we assume the following prior for the weights:
B ~ N(0,A™ 1)

Bayesian Linear regression

Let 8 be the weights of our linear regression model:

1 1
=X & ~ N(0,0?%). (. 02) — Ny — 2
Y B+e € (0,0%) p(y| X, B;0?) Gra)3 exp(202||y X3)

By maximizing the log likelihood we get the MLE solution for the weights:

B=(XTX)1XTy B~N(B,04(XTX)™)
What if we assume the following prior for the weights:
B ~ N(0,A™ 1)

Then the posterior will be:
P(Bly, X;07%) o< P(y|B;0%)P(B)

B~ N(pin, L),

1 1
p(B|y; X,0%) xexp [——|ly — XB||* — =BTAB
202 2 o
= (XTX +6°0) X'y,

Y, =0’ (XTX + 02./\)—1 .

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap3/BayesianRegression.pdf

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap3/BayesianRegression.pdf

Bayesian Linear dynamics fitting

Fit a Global Gaussian Mixture Model using all samples (z+, ut, Te41)
of all iterations and time steps. -> prior

Use current samples (from this iteration) and obtain Gaussian posterior
for (.CUt, U, CIZ't_|_1), which you condition to obtain p(.ﬁUt_|_1]:Et, Ut).

Such prior results in 4 to 8 times less samples needed, despite the fact
that it is not accurate enough by itself.

o BHNEA N (e = po) (ft — po) ™
N + ng
mig + nofi

m —+ o

1L

Posterior of mean and covariance where [, 2. are the empirical means and
covariances and @, uo, ng, m an inverse Wishart prior

Learning Neural Network Policies with guided Policy Search under Unknown Dynamics, Levine and Abbeel 2014

Bayesian Linear dynamics fitting

Fit a Global Model of Dynamics by fitting a Neural Network using all
samples (xt, Ut , xt+1)of all iterations and time steps, and across
multiple manipulation tasks->multi-task learning.

Use model predictive control with iLQR for computing the policy at every
time step.

State is the robotic arm configuration and cost depends on a desired end-
effector pose. No object involved in the state.

df
f([x:u]) = f([x;u)) - o ([x;u] — [xq: u4))
_ _[Xi;uz]]
= f([x'uuz])
_ = T _ .
2 _) Exu xu_) ii[df] qu ,Xu
_qu,xu% d[i]ju] Yixu,xu d[x u + Z:x x|

One shot Learning of Manipulation Skills with Online Dynamic Adaptation and Neural Network Priors, Fu et al.

Step-size in iterative LQR

Remember from the last lecture:

The quadratic approximation in invalid too far away from the reference trajector

1
X ¢— arg min §(X ~3)TH(x - %)+ g’ (x — %)

Step-size in iterative LQR

Remember from the last lecture:

The quadratic approximation in invalid too far away from the reference trajector

1
X ¢— arg min §(X ~3)TH(x - %)+ g’ (x — %)

Instead of using the argmin we do a line search:

until convergence:

Ft — vxt,utf(f{ta ﬁt)

Ct — vxt,utc(&ta ﬁt)

C; = Vi, 4, c(Xe,)

line search for «

Run LQR backward pass on state dx; = x; — X; and action du; = u; — Wy

Run forward pass with real nonlinear dynamics and u; = 4y + Ki(xy — T7) + aky

Update x; and u; based on states and actions in forward pass

Step-size in iterative LQR

- Both the quadratic cost approximation and

- We want the trajectory distributions not to change much from iteration to iteration
of our policy.
- Constraint the KL divergence between trajectory distributions:

Dy (p(7)[|p(7)) < €

KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence
between policies.

Dy (p(7)[|p(7)) = Ep(r)[log p(7) — log p(7)]

p(T) = p(x1) HP(Ut|Xt)p(Xt+1|Xta u) p(7) = p(x1) Hﬁ(utlxt)p(xtH x¢, u)

dynamics & initial state are the same!

KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence
between policies.

p(T) = p(x1) HP(Ut|Xt)p(Xt+1|Xta u) p(7) = p(x1) Hﬁ(utlxt)p(xtH x¢, u)

dynamlcs & initial state are the same!

log p(t) — log p(7) = log p(x1 +Zlogp u|me) 4 log p(weg |ze, us)
t=1

—logp(z1) + Z — log p(ui|xt) — log p(zey1|@e, ue)
t=1

KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence
between policies.

p(T) = p(x1) HP(Ut|Xt)p(Xt+1|Xta u) p(7) = p(x1) Hﬁ(utlxt)p(xtH x¢, u)

dynamlcs & initial state are the same!

log p(t) — log p(7) = log p(x1 +Zlogp u|me) 4 log p(weg |ze, us)
t=1

—logp(z1) + Z — log p(ui|xt) — log p(zey1|@e, ue)
t=1

Dk (p(7)[|p(7)) = Ep(r) ZIng(ut\Xt) — log p(uy|x¢)

Dxuw(p(7)|[p(7 Z p(xe,uy) 108 P(ue|X¢) — log pue|xy)]

KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence
between policies.

KL divergence constraints are important to ensure monotonic improvement of
the policy behavior also in model-free environments.

Covariant policy search (Bagnell et all), Natural policy gradient (Kakade
2001), Relative entropy policy search (Peters et al. 2003), utilize such
constraints when taking the policy gradient.

Theoretical guarantees for a general policy parametrization and a practical
algorithm were given recently in the TRPO Schulman et al.

Trust Region Policy Optimization

Police gradients with monotonic guarantees!

Police gradients: have a function approximation for the
policy mg(u|z) and optimize use SGD. SGD is sufficient to learn
great object object detectors for example. What is different in RL?

Non-stationarity in RL: Each time the policy changes the state
visitation distribution changes. And this can cause the policy to
diverge!

Contribution: theoretical and practical method of how big of a step
our gradient can take.

Trust Region Policy Optimization, Schulman et al. 2015

Problem Setup

Problem: minimize expected cost of policy

77(7-‘-) — ESO,aO,... Z’YtC(St), where
| t=0

So ™ PO(SO)aat ~ W(at‘st)a St+1 ~ P(3t+1\8t,at)

- Suppose we execute policy 7w in the MDP, obtaining a set
of trajectories.

- Using these trajectories, can we construct loss function
L that is a local approximation for the expected cost 177

A Neat |dentity

Advantage function: A, (s,a) = Qx(s,a) — V. (s)

Visitation distribution: p=(s) = (P(so = s) + 7P (s1 = s) + 7°P(s2 = s) + ...)

Expected cost of new policy can be written in terms of old one

n(7) =n(r) + Y pa(s) Y w(als)Ar(s, a)

Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford 2002

Surrogate Loss Function

n(7) has complicated dependence on 7 through px(s)
Define surrogate loss L, a local approximation to 7

(@) =n(m) +) pa(s) Y w(als)Ax(s, a)

Lo(7) = n(m) + Y pels)) 7(als)Ax(s, a)

Improvement Iheorem

2ey

n(m) < Ly(7) + CDgi™(mw, 7), where C' = 1=)

€ — mSaX|Ea'N7T/(a|S) [Aﬂ'(sﬁ a’)”

DRy (m, @) = max, Dgp(n(+|s) || 7(:|s))

Mixture policy update considered by Kakade and Langford:

Tnew (@|8) = (1 — a)7wo1d(als) + an’(als).

Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford 2002

Algorithm

- Optimize surrogate loss + KL penalty => guaranteed
Improvement to 7

n(n) L(n)+C-KL L(m)

diagram John Schulman

Review

-+ Devised a surrogate loss L, which is a tractable local
approximation to 7

Lo() = n(m) + > pa(s) Y 7(als)Ax(s, a)

- KL-penalized surrogate loss majorities the true objective i

2ey

n(7) < L. (7) + CDi™(m,), where C = 1)

- We don’t have an algorithm yet: need to construct L.from
sampled data, and make approximations

Sampling

Lo(7) = n(m) + Y pels) Y 7(als)Ar(s, a)

- Want to construct an objective that in expectation equals L
plus a constant independent of 7

- Execute policy to sample states from px

- Use empirical returns in place of A

Approximations

mini@mize (Lo . (0) + CDg1™ (0014, 0)]

iL Approx #1: use trust region instead of penalty

mini@mize Ly, (0)

subject to Dyt (6o1a,6) < 0.

@ Approx #2: use mean KL instead of max KL

mini@mize Lo_,.(0)

subject to D} (Ao1q,) < &

Relation to Policy lteration and Natural Policy Gradient

Trust region policy optimization: Policy Gradient:

mini@mize [Vngold (9)’9:90101 - (0 — eold)}

minimize Ly, (6) |
/ — g subject to =[]0 — Go1a|]* < 6.
subject to Dy (6o1d,60) < 0 2

Natural Policy Gradient: Relative entropy policy search
(Peters et al. 2010) constraints the
TRPQ in limit as 6 — 0 state-action marginals p(a,s) instead
of p(als)

 How to solve this constrained optimization problem at every iteration?

e Authors used a direction search based on quadratic approximation of the
constraint and then line search to find the step so that constraint is not

violated and the surrogate cost goes down.

Experiments: Simulated Robot Control

Policy parametrization as a neural network

Cost function: move forward and don'’t fall over

diagram John Schulman

Constraint Optimization in iLQR

mmz p(xe,uy) Xt ut)] s.t. DKL(p(T)Hﬁ(T)) <€

KL-divergences between trajectories:

Dxw(p(7)||p(7 Z p(xe,uy) 108 P(ueX¢) — log puy|xy)]

Dy (p(7)||p(7 Z p(xe,uy) | —10g plue|xe)] + Ep(xt)[‘Ep(utlxt)[10gp(11t|Xt)'H

Dk (p(7)|[p(7 Z p(xeuy) [~ 108 D(we[xp) — H(p(ue[x))]

KL-divergences between trajectories

We have the following constrained optimization problem:

mmz e (e, 1)) st Dice (p(7)[p(7)) < €

Dy, (p(7)||p(7) Z p(weus) — 108 D(ue|Te) — Hp(ug|ze)))

T

Reminder: Linear-Gaussian solves min » = Ep,) [c(@4, ug) — H(p(ue|zy))]
t=1

p(ug|re) = N(Ke(zp — Te) + ke + Gy, 2t)

If we can get Dy, into the cost, we can just use iLQR!

We will solve it with dual gradient descent

min f(x) s.t. C(x) =0

X

L(x,\) = f(x) + \O(x)

g(\) = inf £(x, \

A < arg max g(A)

How to maximize? Compute gradients!

Digression: dual gradient descent

min f(x) s.t. C(x) =0 L(x,) = f(x)+ A (x)

X

g(\) = inf £(x, \

dg :\QE ax | AL if x* = argminy £(x, \), then j—[; = (!
d\ dx>~d\ = d)\ x

Digression: dual gradient descent

min f(x) s.t. C(x) =0 L(x,\) = f(x)+ A (x)

1. Find x* + argminy £(x, A)

x* = argmin £(x, \) 2. Compute 29 = & (x*)\
dg d o
_g——[’(x*,/\) 3. A+ A+ ax

d\ d\

DGD with iterative LQR

This is the constrained problem we want to solve:
mlﬂz p(xe up) [C(Xt, ue)] .6 Dxr(p(7)|lp(7)) <€
Dy (p(7)|[p(7 Z p(xe,ur) [log Plue|xe) — H(p(ue|xe))]

Z p(oce) [0, 1) — Mog pluy|x;) — AMH (p(uy]x))] — Ae

DGD with iterative LQR

mlﬂz p(xe up) [C(Xt, ue)] .6 Dxr(p(7)|lp(7)) <€

Z p(oce) [0, 1) — Mog pluy|x;) — AMH (p(uy]x))] — Ae

1. FInd p* « arg mln L(p, \)

dg dﬁ

2. Computed o= (PN
g

3.)\%)\%—ad)\

DGD with iterative LQR

1. Find p* < argmin, L(p, \)

manEp(xt u) [C(Xe, wg) — Alog p(ug|xe) — AH(p(ue[x¢))] — Ae

t=1

Reminder: Linear-Gaussian solves min Zt L Epse, un [e(Xe, ug) — H(p(ug|xy))]

plue]xy) = M(Ky(xp — %) + ki + 0, 24)
mmz oy | e, 0) = log) = Mol)

Just use LQR with cost ¢(x¢, us) = (%, ue) — log plug|xy)

DGD with iterative LQR

mlﬂz p(xe up) [€(Xt, ue)] .6 Dxr(p(7)[[p(7)) < e

1. Set 6(Xt, ut) — %C(Xt, ut) — logﬁ(ut\xt)
2. Use LQR to find p*(u;|x;) using ¢ -
3. A A+ a(DxLp()|p(r) —e)

diagram Sergey Levine

* Learning local linear dynamics models

e Using KL divergence constraints for global and local policy search

Learning general policies by imitating local controllers

 Each iLQR controller achieves the task from a specific initial state
x_0

 We want to learn general policies by mimicking such controllers.
Why?

measuring the cost at training time.

 Those general policies can be: a non parametric nearest neighbor
local controller selection or a neural network policy 7y (x)

Imitating local controllers with DAGGER

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut\Ot) from human data Dy = {01, Uty ..., ON, UN}

2. run 7T6)(Ut|0t) to get dataset D, = {01, ooy OM}

xecute current policy and Query Expert

3. Ask human to label D, with actions Ut E
4. Aggregate: D« <+ D_« UD_

5. GOTO step 1.

diagram: DAGGER paper

Imitating local controllers with DAGGER

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut\Ot) from human data Dy = {01, Uty ..., ON, UN}

2. run 7T6)(Ut|0t) to get dataset D, = {01, ooy OM}

3.| Ask human to label D with actions Ut
Execute ent policy and Query Expert

Steering

New Data

4. Aggregate: D« <+ D_« UD_ " g/g?‘-’f'\\ D = %@
5. GOTO step 1. \n-,.,g,,_,a@

Aggregate

4 Da t et All previous data
P I icy ,
f&.ﬁ @

eeeeeeeeeeee

- repeatedly query the expert

Imitating local controllers with DAGGER

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut\Ot) from data D+ = {01,u1, ...,ON,uN}

2. run 7T6)(Ut|0t) to get dataset D, = {01, ooy OM}

3.| Ask to label D, with actions
Execute ent policy and Query Expert

Steering

New Data

4. Aggregate: D« <+ D_« UD_ " g/g?‘-’f'\\ D = %@
5. GOTO step 1. \n-,.,g,,_,a@

Aggregate

4 Da t et All previous data
P I icy y
f&.ﬁ @

eeeeeeeeeeee

- repeatedly query the expert

Imitating local controllers with DAGGER

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut\Ot) from controller data D+ = {01, Ui, ..., ON, uN}

1 run 7Té)(ut|0t) to get dataset D, = {01, ooy

4. Aggregate: D« <+ D_« UD_

5. GOTO step 1.

- execute an unsafe/partially trained policy

- repeatedly query the expert

DAGGER

DAGGER assumes that the learner can imitate the expert. The
expert comes close to the learner by matching the state
distributions.

Guided policy search does not require to execute a partially trained
policy on hardware. The teacher further adapts to actions the
learner can imitate.

Guided policy search, Levine and Koltun 2013

Guided Policy Search

Impose constraints on trajectory optimization:

T
. generic trajectory
min , E c(xy,uy) 8.t xp = f(X_1,up_1) optimization, solve

however you want

Guided policy search, Levine and Koltun 2013

Solve it using dual gradient descent

min f(x) s.t. C(x) =0 L(x,\) = f(x)+ A (x)

1. Find x* + argminy £(x, A)

x* = argmin £(x, \) 2. Compute 29 = & (x*)\
dg d -agy
g—[’(x*,/\) 3. A+ A+ ax

d\ d\

A small tweak to DGD: augmented Lagrangian

m}in f(x) s.t. C(x)=0 L(x,\) = f(x)+ AO(x)
L(x,A) = f(x) + AC(x) + pl|C(x)[]

- Still converges to correct

solution
- When far from solution, 1. Find x* < argminy £(x, \)
quadratic term tends to B
Improve Stablllty) Compute 3 = ﬁ(x*ﬂ A)
- Closely related to ;
alternating direction method 3. A+ A Ozdi

of multipliers (ADMM)

Constraining trajectory optimization with dual gradient

descent

m1911 c(T) s.t. uy = mo(xy)
TJ

Lagrangian:

L(1,0,0) =c(1) +) Ae(mo(xe) — ue)

Augmented Lagrangian:

L(T,0.0) =c(T) + > Ae(mo(xe) —w) + Y pylma(xe) — uy)?

t=1 t=1

Stochastic (Gaussian) GPS

1. Optimize p(7) with respect to some surrogate é(x¢, ug)
2. Optimize 6 with respect to some supervised objective

3. Increment or modify dual variables X

GPS with dual gradient descent

m1911 c(7) s.t. wp = mo(Xy)
TJ

L(r,0,0) =c(T) + Y Mlmo(xe) —w) + Y pelmo(xe) — wy)?

t=1 t=1

1. Find 7 < argmin L(7,0,)) (e.g. via iLQR)

2. Find 0 + arg m@in L(1,0,)) (e.qg. via SGD)
dg

Guided policy search

4 I
run p(ug|x;)
/ > on robot
collect D =1{7;
2Rt)

)

~ next train 7T9(11t|0t)
1teration ©) gz (O}(®) 52(®

/\ fit dynamics
Xt—l—l‘xt ut 2,
-
1mpr0ve 4 =

Guided policy search

1. Find 7 + arg mTin L(7,0,)\) (e.g. via iLQR)

2. Find 0 < arg m@in L(1,0,)) (e.qg. via SGD)
dg

A A —
3.\ +cvd)\

- Can be interpreted as constrained trajectory optimization method

- Can be interpreted as imitation of an optimal control expert, since
step 2 is just supervised learning

- The optimal control “teacher” adapts to the learner, and avoids
actions that the learner can’t mimic

DAGGER vs. GPS

- Dagger does not require an adaptive expert

- Any expert will do, so long as states from learned policy can be
labelead

- Assumes it is possible to match expert’s behavior up to bounded
loss

- Not always possible (e.g. partially observed domains)

- GPS adapts the “expert” behavior

- Does not require bounded loss on initial expert (expert will
change)

- |t does require initial state resets!

Imitating MPC: PLATO algorithm

1. Train me(u¢|ot) from controller data D = {01, u1, ..., on, un}
2. Run @ (u¢|o) to get dataset D, = {o4,...,00/}

3. Ask computer to label D, with actions u;

4. Aggregate: D <~ DUD,

simple stochastic pc%licy: T(ue|zy) = N(Kpxy + ke, 20,)
7 (u|are) = arg min > Ezlc(wy, uy)] + ADkL (F (ug|ae) || 7o (ue o))

t'=t

|‘. -

7T9(111‘01)

Imitating MPC: PLATO algorithm

simple stochastic policy: @ (u¢|z) = N(Kixe + ke, 20,)
T

7(ue|ry) = arg m%in Z Exlc(xy,up)| + ADgr (7 (ug|as)||mo (ut]or))

m9(ut|os) Learner: trained from observations!

T(ue|xy) = arg mﬁ@n Z Exlc(ze, up)]

t'=t

Replanning = Model Predictive Control (MPC)

mo(utlog) - control from images @ @ @ @

m(ut|zt) - control from states X1 @

PLATO: Policy learning using Adaptive trajectory optimization, Kahn et al. 2016

Observability at train and test time

ngien Erpryle(r)] st plut|ze) = mo(ut|or)

training time test time
g - —”‘ \

PLATO: Policy learning using Adaptive trajectory optimization, Kahn et al. 2016

Example: End-to-End training of Deep Visuomotor Policies

* Learning Neural Network general policies using direct RGB (no object detector,
pose estimator or trackers) as input and trajectory optimization as supervision

* State: positions and velocities of joints, not object pose.
* Tasks: Swimmer, octopus etc, and peg insertion into a hole

* The RGB input is transformed to a set of x,y key points at the final layer to avoid
overfitting

* Pretraining of the video CNN using object pose regression

* The environment is fully observable at training time (e.g., objects at known
positions so that we know the desired state of the robotic arm), but not at test time

* Train and test environments are overall similar, due to the small amount of training
data that can be collected in real world with instrumented training scenarios

End-to-End training of Deep Visuomotor Policies, Levine et al

Example: End-to-End training of Deep Visuomotor Policies

spatial softmax feature motor
) points torques
i i, 7x7 conv fully fully fully L
stride 2 expected connected [l connected [connected . %
RelLU 2D position RelU RelU linear 7L 9t
— s
[1 o—d
7
240
109 109 64 40 40 7
109

robot
configuration
39

End-to-End training of Deep Visuomotor Policies, Levine et al.

—xample: End-to-End training of Deep Visuomotor Policies

End-to-End Training of
Deep Visuomotor Policies

Learned Visual Representations

End-to-End training of Deep Visuomotor Policies, Levine et al

Example: Learning Dexterous Manipulation Policies from

Experience and Imitation

* Learning Neural Network and nearest neighbor based general policies using
pose state as input and trajectory optimization as supervision

« State: positions and velocities of joints and objects—optitrack motion capture
IS used for object tracking at training time, and at test time for NNeib policy

* Tasks: dexterous manipulation, hard because of contact!
* iLQR fails without initialization from a demonstration!

* Nearest Neighbor using the object pose to determine which local policy to
follow —requires saving all local controllers and knowing object pose (for
effective matching)

* Neural net: can learn a mapping directly from on board sensing to actions, no
vision, using GPS

Learning Dexterous Manipulation Policies from Experience and Imitation, Kumar et al

—xample: Learning Dexterous Manipulation Policies from
—Xperience and Imitation

Learning Dexterous Manipulation Policies from

Experience and Imitation

Vikash Kumar*, Abhishek Gupta”*, Emanuel Todorov*, Sergey Livine”

*University of Washington, Seattle “*University of California, Berkeley

International Journal of Robotics Research

Learning Dexterous Manipulation Policies from Experience and Imitation, Kumar et al

Embed to Control: A Locally Linear latent Dynamics model

for Control from raw Images

* Infer a low-dimensional latent state space in which optimal control
(LQR) can be used.

e Latent state should: 1) reconstruct the input image 2) predict the
next state and then next observation 3) prediction should be locally

linearizable

KL
/_Lt’ htl‘ans B N . ,Ll’t“l‘].
.“‘Il> h;ﬁllc .‘.-... Q»D t Q1l) Qd’ 't.’ hCnC ‘ll.ll..
; j A othf/\; “Sprl ?
@ 7 it—i—l ~ xt"‘l

& *s '
‘ ¢ ‘S ppmun= g hgec Pteesns= d
..... pencode
O &= -h-'

Tew Pt hgec <%="
—blmnsmon

Embed to Control: A Locally Linear latent Dynamics model for Control from raw Images, Water et al.

—mbed to Control: A Locally Linear latent Dynamics model
for Control from raw Images

Embed to Control

A Locally Linear Latent Dynamics Model for Control from Raw Images

Manuel Watterfjost Tobias Springenberg,‘]oschka Boedecker,‘Martin RiedmillerT

s University of Freiburg, Machine Learning Lab
T Google DeepMind 0,0

(o) machine learning lab

O
0
-
0
T
02
e

UNI

Embed to Control: A Locally Linear latent Dynamics model for Control from raw Images, Water et al.

* Learning local dynamics models

* i-LQR with learn local models

* Trust region constraint for policy optimization: TRPO and i-LQR
* Learning general policies by imitating i-LQR local controllers

DAGGER

Guided policy search

Next lecture

 Differentiable model-based reinforcement learning
* Recurrent networks and optimal control

* Back-propagate directly to the policy using temporal unfolding-
differentiable dynamics- back propagate through discrete actions
(stochastic sampling on the forward pass), or through continuous
actions (re-paramertization trick)

