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Last lecture
Iterative-Linear Quadratic Regulator for continuous control: We 
assumed:

•  known dynamics model 

•  we could measure the reward (state x was fully observed, thus 
also the distance from a desired state x*) 

and we showed a local optimization process that would achieve the 
desired task from a specific initial state x_0 using iterative linear 
approximations of dynamics and quadratic approximations for the 
cost.

Learning global dynamics models using Neural Networks as the 
function class



This lecture

• Learning local dynamics models

• i-LQR with learn local models

• Trust region constraint for policy optimization: TRPO and i-LQR

• Learning general policies by imitating i-LQR local controllers 

• DAGGER

• Guided policy search



Next lecture

• Differentiable model-based reinforcement learning

• Recurrent networks and optimal control

• Back-propagate directly to the policy using temporal unfolding-
differentiable dynamics- back propagate through discrete actions 
(stochastic sampling on the forward pass), or through continuous 
actions (re-paramertization trick)



Differentiate and optimize.

Need derivates:
In case f is linear and c quadratic, then we can using dynamic 
programming and get optimal solution!-> i-LQR, MPC extensions

(Locally) Optimal Control

min
u1,...,uT

TX

t=1

c(xt, ut) s.t. xt = f(xt�1, ut�1)

min
u1,...,uT

c(x1, u1) + c(f(x1, u1), u2) + · · ·+ c(f(f(...)...), uT )

df

dxt
,

df

dut
,

dc

dxt
,

dc

dut



Local models

Global dynamics model would do. But we saw they are hard to fit/get them to 
generalize.
But if you use i-LQR, in any case it is a local optimization method, around  
reference trajectories! You don’t need dynamics everywhere (at each iteration), 
only around the reference trajectory:          !
(Time varying) Local models of dynamics! Local linear approximations!
 

x̂t, ût

If we knew the dynamics



Time varying linear dynamics
Local models

t

reference trajectory
x̂t, ût, t = 1, ..., T



Time varying linear dynamics
Local models

t

f(xt, ut) ⇡ Atxt +Btut

At =
df

dxt
Bt =

df

dut

reference trajectory
learn time varying linear dynamics:

x̂t, ût, t = 1, ..., T
At,Bt



Time varying linear dynamics
Local models

t

f(xt, ut) ⇡ Atxt +Btut

At =
df

dxt
Bt =

df

dut

reference trajectory
learn time varying linear dynamics:

x̂t, ût, t = 1, ..., T
At,Bt

How do I get the data to fit my linear dynamics at each time step?
We execute the controller      at state      to explore how the world 
works in the vicinity of the reference trajectory! 

ut xt

Which controller?



Which controller to collect samples with?

• We need a stochastic controller! Why?



Which controller to collect samples with?

• We need a stochastic controller! Why?
• Here is a good guess: add some noise to the output of iLQR:

What controller to execute?



Which controller to collect samples with?

• We need a stochastic controller! Why?
• Here is a good guess: add some noise to the output of iLQR:

What controller to execute?What controller to execute?

• It turns out that setting               solves the following 
maximum entropy control problem:

What controller to execute?

Guided Policy Search, Levine and Colton 2013



Which controller to collect samples with?

• We need a stochastic controller! Why?
• Here is a good guess: add some noise to the output of iLQR:

What controller to execute?What controller to execute?

• It turns out that setting               solves the following 
maximum entropy control problem:

What controller to execute?

Guided Policy Search, Levine and Colton 2013

What controller to execute?

• Remember, cost to go:

• The above controller strikes the right balance between 
minimizing the cost and maximize exploration



Which controller to collect samples with?

What controller to execute?

• Act as randomly as possible while minimizing the cost! What does this 
remind us of?

Guided Policy Search, Levine and Colton 2013



Which controller to collect samples with?

What controller to execute?

• Act as randomly as possible while minimizing the cost! What does this 
remind us of?

• MaxEntIOC: be as random as possible while matching the feature 
counts of demonstrated paths

max

P
�
X

⌧

P (⌧) logP (⌧)

X

⌧

P (⌧)f⌧ = fdem

Guided Policy Search, Levine and Colton 2013



Time varying linear dynamics

Local models

We iteratively fit dynamics and update the policy. Why such iteration is 
important?
So that the space (state, action distribution) our dynamics are estimated is 
similar to the one our policy visits (last lecture).



Fitting time varying linear dynamics

Local models

• Can we further improve sample complexity? Right now each           
sample                     contributes in one linear model fitting. 

• Instead of linear regression use Bayesian linear regression!
(xt, ut, xt+1)



Bayesian Linear regression
Let     be the weights of our linear regression model:�



Bayesian Linear regression
Let     be the weights of our linear regression model:

By maximizing the log likelihood we get the MLE solution for the weights:

�



Bayesian Linear regression
Let     be the weights of our linear regression model:

By maximizing the log likelihood we get the MLE solution for the weights:

What if we assume the following prior for the weights:

�



Bayesian Linear regression

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap3/BayesianRegression.pdf

Let     be the weights of our linear regression model:

By maximizing the log likelihood we get the MLE solution for the weights:

What if we assume the following prior for the weights:

Then the posterior will be:

�

P (�|y,X;�2) / P (y|�;�2)P (�)

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap3/BayesianRegression.pdf


Learning Neural Network Policies with guided Policy Search under Unknown Dynamics, Levine and Abbeel 2014

Bayesian Linear dynamics fitting
Fit a Global Gaussian Mixture Model  using all samples                            
of all iterations and time steps. -> prior
Use current samples (from this iteration) and obtain Gaussian posterior  
for                    , which you condition to obtain                      .
Such prior results in 4 to 8 times less samples needed, despite the fact 
that it is not accurate enough by itself.

Posterior of mean and covariance where         are the empirical means and 
covariances and                    an inverse Wishart prior�, µ0, n0,m

µ̂, ⌃̂

p(xt+1|xt, ut)

(xt, ut, xt+1)

(xt, ut, xt+1)



One shot Learning of Manipulation Skills with Online Dynamic Adaptation and Neural Network Priors, Fu et al.

Fit a Global Model of Dynamics by fitting a Neural Network  using all 
samples                          of all iterations and time steps, and across 
multiple manipulation tasks->multi-task learning. 
Use model predictive control with iLQR for computing the policy at every 
time step. 
State is the robotic arm configuration and cost depends on a desired end-
effector pose. No object involved in the state.

Bayesian Linear dynamics fitting

(xt, ut, xt+1)



Step-size in iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR
The quadratic approximation in invalid too far away from the reference trajectory
Remember from the last lecture:



Step-size in iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR
The quadratic approximation in invalid too far away from the reference trajectory

Nonlinear case: DDP/iterative LQR

line search for

Instead of using the argmin we do a line search:

Run forward pass with real nonlinear dynamics and ut = ût +Kt(xt � x̂T ) + ↵kt

Remember from the last lecture:

↵



Step-size in iterative LQR

• Both the quadratic cost approximation and the fitted linear dynamics are invalid 
too far away from the reference trajectory. 

• We want the trajectory distributions not to change much from iteration to iteration 
of our policy.

• Constraint the KL divergence between trajectory distributions:
How to stay close to old controller?

How to stay close to old controller?
DKL(p(⌧)||p̄(⌧))  ✏



KL-divergences between trajectoriesKL-divergences between trajectories

• Not just for trajectory optimization – really important for model-free 
policy search too! More on this in later lectures

dynamics & initial state are the same!

KL divergence between trajectory distributions translates to KL divergence 
between policies.



KL-divergences between trajectoriesKL-divergences between trajectories

• Not just for trajectory optimization – really important for model-free 
policy search too! More on this in later lectures

dynamics & initial state are the same!

KL divergence between trajectory distributions translates to KL divergence 
between policies.

log p(⌧)� log p̄(⌧) = log p(x1) +

TX

t=1

log p(ut|xt) + log p(xt+1|xt, ut)

� log p(x1) +

TX

t=1

� log p̄(ut|xt)� log p(xt+1|xt, ut)



KL-divergences between trajectoriesKL-divergences between trajectories

• Not just for trajectory optimization – really important for model-free 
policy search too! More on this in later lectures

dynamics & initial state are the same!

KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence 
between policies.

log p(⌧)� log p̄(⌧) = log p(x1) +

TX

t=1

log p(ut|xt) + log p(xt+1|xt, ut)

� log p(x1) +

TX

t=1

� log p̄(ut|xt)� log p(xt+1|xt, ut)



KL-divergences between trajectories

KL divergence between trajectory distributions translates to KL divergence 
between policies.
KL divergence constraints are important to ensure monotonic improvement of 
the policy behavior also in model-free environments.
Covariant policy search (Bagnell et all), Natural policy gradient (Kakade 
2001), Relative entropy policy search (Peters et al. 2003), utilize such 
constraints when taking the policy gradient.
Theoretical guarantees for a general policy parametrization and a practical 
algorithm were given recently in the TRPO Schulman et al.



Trust Region Policy Optimization

• Police gradients: have a function approximation for the            
policy              and optimize use SGD. SGD is sufficient to learn 
great object object detectors for example. What is different in RL? 

• Non-stationarity in RL: Each time the policy changes the state 
visitation distribution changes. And this can cause the policy to 
diverge!

• Contribution: theoretical and practical method of how big of a step 
our gradient can take.

Police gradients with monotonic guarantees!

Trust Region Policy Optimization, Schulman et al. 2015

⇡✓(u|x)



Problem: minimize expected cost of policy

Problem Setup

⌘(⇡) = Es0,a0,...

" 1X

t=0

�tc(st), where

#

s0 ⇠ ⇢0(s0), at ⇠ ⇡(at|st), st+1 ⇠ P (st+1|st, at)

• Suppose we execute policy    in the MDP, obtaining a set 
of trajectories.

• Using these trajectories, can we construct loss function 
L that is a local approximation for the expected cost    ?

⇡

⌘



A Neat Identity

Advantage function:

Visitation distribution:

Expected cost of new policy can be written in terms of old one

A⇡(s, a) = Q⇡(s, a)� V⇡(s)

⇢⇡(s) = (P (s0 = s) + �P (s1 = s) + �2P (s2 = s) + ...)

⌘(⇡̃) = ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a|s)A⇡(s, a)

Approximately Optimal Approximate Reinforcement Learning, Kakade and Langford 2002 



Surrogate Loss Function

Define surrogate loss L, a local approximation to 

⌘(⇡̃) = ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a|s)A⇡(s, a)

L⇡(⇡̃) = ⌘(⇡) +
X

s

⇢⇡(s)
X

a

⇡̃(a|s)A⇡(s, a)

⌘

 has complicated dependence on    through ⌘(⇡̃) = ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a|s)A⇡(s, a)⌘(⇡̃) = ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a|s)A⇡(s, a)⌘(⇡̃) = ⌘(⇡) +
X

s

⇢⇡̃(s)
X

a

⇡̃(a|s)A⇡(s, a)



Improvement TheoremImprovement&Theorem

9

Trust Region Policy Optimization

the distribution of the initial state s
0

, and � 2 (0, 1) is the
discount factor.

Let ⇡ denote a stochastic policy ⇡ : S ⇥ A ! [0, 1], and
let ⌘(⇡) denote its expected discounted cost:

⌘(⇡) = E
s

0

,a

0

,...

" 1X

t=0

�tc(s
t

)

#
, where

s
0

⇠ ⇢
0

(s
0

), a
t

⇠ ⇡(a
t

|s
t

), s
t+1

⇠ P (s
t+1

|s
t

, a
t

).

We will use the following standard definitions of the state-
action value function Q

⇡

, the value function V
⇡

, and the
advantage function A

⇡

:

Q
⇡

(s
t

, a
t

) = E
st+1

,at+1

,...

" 1X

l=0

�lc(s
t+l

)

#
,

V
⇡

(s
t

) = E
at,st+1

,...

" 1X

l=0

�lc(s
t+l

)

#
,

A
⇡

(s, a) = Q
⇡

(s, a)� V
⇡

(s), where
a
t

⇠ ⇡(a
t

|s
t

), s
t+1

⇠ P (s
t+1

|s
t

, a
t

) for t � 0.

The following useful identity expresses the expected cost
of another policy ⇡̃ in terms of the advantage over ⇡, accu-
mulated over timesteps (see Kakade & Langford (2002) for
the proof, which we also reprise in Appendix A using the
notation in this paper):

⌘(⇡̃) = ⌘(⇡) + E
s

0

,a

0

,s

1

,a

1

,...

" 1X

t=0

�tA
⇡

(s
t

, a
t

)

#
, where

s
0

⇠⇢
0

(s
0

), a
t

⇠ ⇡̃(a
t

|s
t

), s
t+1

⇠P (s
t+1

|s
t

, a
t

). (1)

Let ⇢
⇡

be the (unnormalized) discounted visitation fre-
quencies

⇢
⇡

(s)=(P (s
0

= s)+�P (s
1

= s)+�2P (s
2

= s)+. . . ),

where s
0

⇠ ⇢
0

and the actions are chosen according to
⇡. Rearranging Equation (1) to sum over states instead of
timesteps, we obtain

⌘(⇡̃) = ⌘(⇡) +
X

s

⇢
⇡̃

(s)
X

a

⇡̃(a|s)A
⇡

(s, a). (2)

This equation implies that any policy update ⇡ ! ⇡̃ that
has a non-positive expected advantage at every state s, i.e.,P

a

⇡̃(a|s)A
⇡

(s, a)  0, is guaranteed to reduce ⌘, or
leave it constant in the case that the expected advantage
is zero everywhere. This implies the classic result that the
update performed by exact policy iteration, which uses the
deterministic policy ⇡̃(s) = argmin

a

A
⇡

(s, a), improves
the policy if there is at least one state-action pair with a
negative advantage value and nonzero state visitation prob-
ability (otherwise it has converged). However, in the ap-
proximate setting, it will typically be unavoidable, due to
estimation and approximation error, that there will be some

states s for which the expected advantage is positive (i.e.,
bad), that is,

P
a

⇡̃(a|s)A
⇡

(s, a) > 0. The complex de-
pendency of ⇢

⇡̃

(s) on ⇡̃ makes Equation (2) difficult to op-
timize directly. Instead, we introduce the following local
approximation to ⌘:

L
⇡

(⇡̃) = ⌘(⇡) +
X

s

⇢
⇡

(s)
X

a

⇡̃(a|s)A
⇡

(s, a). (3)

Note that L
⇡

uses the visitation frequency ⇢
⇡

rather than
⇢
⇡̃

, ignoring changes in state visitation density due to
changes in the policy. However, if we have a parameter-
ized policy ⇡

✓

, where ⇡
✓

(a|s) is a differentiable function
of the parameter vector ✓, then L

⇡

matches ⌘ to first order
(see Kakade & Langford (2002)). That is, for any parame-
ter value ✓

0

,

L
⇡✓

0

(⇡
✓

0

) = ⌘(⇡
✓

0

),

r
✓

L
⇡✓

0

(⇡
✓

)

��
✓=✓

0

= r
✓

⌘(⇡
✓

)

��
✓=✓

0

. (4)

Equation (4) implies that a sufficiently small step ⇡
✓

0

! ⇡̃
that improves L

⇡✓
old

will also improve ⌘, but does not give
us any guidance on how big of a step to take. To address
this issue, Kakade & Langford (2002) proposed a policy
updating scheme called conservative policy iteration, for
which they could provide explicit lower bounds on the im-
provement of ⌘.

To define the conservative policy iteration update, let ⇡
old

denote the current policy, and assume that we can solve
⇡0

= argmin

⇡

0 L
⇡

old

(⇡0
). The new policy ⇡

new

is taken to
be the following mixture policy:

⇡
new

(a|s) = (1� ↵)⇡
old

(a|s) + ↵⇡0
(a|s) (5)

Kakade and Langford proved the following result for this
update:

⌘(⇡
new

)L
⇡

old

(⇡
new

)+

2✏�

(1� �(1� ↵))(1� �)
↵2, (6)

where ✏ is the maximum advantage (positive or negative)
of ⇡0 relative to ⇡:

✏ = max

s

|E
a⇠⇡

0
(a|s) [A⇡

(s, a)]| (7)

Since ↵, � 2 [0, 1], Equation (6) implies the following sim-
pler bound, which we refer to in the next section:

⌘(⇡
new

)  L
⇡

old

(⇡
new

) +

2✏�

(1� �)2
↵2. (8)

This bound is only slightly weaker when ↵ ⌧ 1, which
is typically the case in the conservative policy iteration
method of Kakade & Langford (2002). Note, however, that
so far this bound only applies to mixture policies gener-
ated by Equation (5). This policy class is unwieldy and
restrictive in practice, and it is desirable for a practical pol-
icy update scheme to be applicable to all general stochastic
policy classes.

Trust Region Policy Optimization

3 Monotonic Improvement Guarantee for
General Stochastic Policies

Equation (6), which applies to conservative policy itera-
tion, implies that a policy update that improves the right-
hand side is guaranteed to improve the true expected cost
objective ⌘. Our principal theoretical result is that the pol-
icy improvement bound in Equation (6) can be extended
to general stochastic policies, rather than just mixture po-
lices, by replacing ↵ with a distance measure between ⇡
and ⇡̃. Since mixture policies are rarely used in practice,
this result is crucial for extending the improvement guaran-
tee to practical problems. The particular distance measure
we use is the total variation divergence, which is defined
by D

TV

(p k q) =

1

2

P
i

|p
i

� q
i

| for discrete probability
distributions p, q.1 Define Dmax

TV

(⇡, ⇡̃) as

Dmax

TV

(⇡, ⇡̃) = max

s

D
TV

(⇡(·|s) k ⇡̃(·|s)). (9)

Theorem 1. Let ↵ = Dmax

TV

(⇡
old

,⇡
new

), and let ✏ =

max

s

|E
a⇠⇡

0
(a|s) [A⇡

(s, a)]|. Then Equation (8) holds.

We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than ↵ can be coupled, so that they are
equal with probability 1�↵. The second proof uses pertur-
bation theory to prove a slightly stronger version of Equa-
tion (8), with a more favorable definition of ✏ that depends
on ⇡̃.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): D

TV

(p k q)2  D
KL

(p k q). Let
Dmax

KL

(⇡, ⇡̃) = max

s

D
KL

(⇡(·|s) k ⇡̃(·|s)). The follow-
ing bound then follows directly from Equation (8):

⌘(⇡̃)  L
⇡

(⇡̃) + CDmax

KL

(⇡, ⇡̃), where C =

2✏�

(1� �)2
.

(10)

Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (10). Note that for now, we assume exact evaluation of
the advantage values A

⇡

.

It follows from Equation (10) that Algorithm 1 is guaran-
teed to generate a sequence of monotonically improving
policies ⌘(⇡

0

) � ⌘(⇡
1

) � ⌘(⇡
2

) � . . . . To see this, let
M

i

(⇡) = L
⇡i(⇡) + CDmax

KL

(⇡
i

,⇡). Then

⌘(⇡
i+1

)  M
i

(⇡
i+1

) by Equation (10)
⌘(⇡

i

) = M
i

(⇡
i

), therefore,
⌘(⇡

i+1

)� ⌘(⇡
i

)  M
i

(⇡
i+1

)�M(⇡
i

). (11)

Thus, by minimizing M
i

at each iteration, we guarantee
that the true objective ⌘ is non-increasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.

Algorithm 1 Approximate policy iteration algorithm guar-
anteeing non-increasing expected cost ⌘

Initialize ⇡
0

.
for i = 0, 1, 2, . . . until convergence do

Compute all advantage values A
⇡i(s, a).

Solve the constrained optimization problem

⇡
i+1

= argmin

⇡


L
⇡i(⇡) +

✓
2✏�

(1� �)2

◆
Dmax

KL

(⇡
i

,⇡)

�

where ✏ = max

s

max

a

|A
⇡

(s, a)|

and L
⇡i(⇡)=⌘(⇡

i

)+

X

s

⇢
⇡i(s)

X

a

⇡(a|s)A
⇡i(s, a)

end for

is a type of majorization-minimization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, M

i

is the surrogate function that
majorizes ⌘ with equality at ⇡

i

. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of ⇡
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.

Since we consider parameterized policies ⇡
✓

(a|s) with pa-
rameter vector ✓, we will overload our previous notation
to use functions of ✓ rather than ⇡, e.g. ⌘(✓) :

= ⌘(⇡
✓

),
L
✓

(

˜✓) := L
⇡✓ (⇡˜

✓

), and D
KL

(✓ k ˜✓) := D
KL

(⇡
✓

k ⇡
˜

✓

). We
will use ✓

old

to denote the previous policy parameters that
we wish to improve upon.

The preceding section shows that ⌘(✓)  L
✓

old

(✓) +

CDmax

KL

(✓
old

, ✓), with equality at ✓ = ✓
old

. Thus, by per-
forming the following minimization, we are guaranteed to
improve the true objective ⌘:

minimize

✓

[L
✓

old

(✓) + CDmax

KL

(✓
old

, ✓)] .

In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy

Trust Region Policy Optimization

3 Monotonic Improvement Guarantee for
General Stochastic Policies

Equation (6), which applies to conservative policy itera-
tion, implies that a policy update that improves the right-
hand side is guaranteed to improve the true expected cost
objective ⌘. Our principal theoretical result is that the pol-
icy improvement bound in Equation (6) can be extended
to general stochastic policies, rather than just mixture po-
lices, by replacing ↵ with a distance measure between ⇡
and ⇡̃. Since mixture policies are rarely used in practice,
this result is crucial for extending the improvement guaran-
tee to practical problems. The particular distance measure
we use is the total variation divergence, which is defined
by D

TV

(p k q) =
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2
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i

� q
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| for discrete probability
distributions p, q.1 Define Dmax

TV

(⇡, ⇡̃) as

Dmax

TV
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TV
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(s, a)]|. Then Equation (8) holds.

We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than ↵ can be coupled, so that they are
equal with probability 1�↵. The second proof uses pertur-
bation theory to prove a slightly stronger version of Equa-
tion (8), with a more favorable definition of ✏ that depends
on ⇡̃.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): D

TV

(p k q)2  D
KL

(p k q). Let
Dmax

KL

(⇡, ⇡̃) = max

s

D
KL

(⇡(·|s) k ⇡̃(·|s)). The follow-
ing bound then follows directly from Equation (8):
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KL

(⇡, ⇡̃), where C =
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Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (10). Note that for now, we assume exact evaluation of
the advantage values A

⇡

.

It follows from Equation (10) that Algorithm 1 is guaran-
teed to generate a sequence of monotonically improving
policies ⌘(⇡
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) � . . . . To see this, let
M

i

(⇡) = L
⇡i(⇡) + CDmax

KL

(⇡
i

,⇡). Then

⌘(⇡
i+1

)  M
i

(⇡
i+1

) by Equation (10)
⌘(⇡

i

) = M
i

(⇡
i

), therefore,
⌘(⇡

i+1

)� ⌘(⇡
i

)  M
i

(⇡
i+1

)�M(⇡
i

). (11)

Thus, by minimizing M
i

at each iteration, we guarantee
that the true objective ⌘ is non-increasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.

Algorithm 1 Approximate policy iteration algorithm guar-
anteeing non-increasing expected cost ⌘

Initialize ⇡
0

.
for i = 0, 1, 2, . . . until convergence do

Compute all advantage values A
⇡i(s, a).

Solve the constrained optimization problem

⇡
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⇡(a|s)A
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end for

is a type of majorization-minimization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, M

i

is the surrogate function that
majorizes ⌘ with equality at ⇡

i

. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of ⇡
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.

Since we consider parameterized policies ⇡
✓

(a|s) with pa-
rameter vector ✓, we will overload our previous notation
to use functions of ✓ rather than ⇡, e.g. ⌘(✓) :

= ⌘(⇡
✓

),
L
✓

(

˜✓) := L
⇡✓ (⇡˜

✓

), and D
KL

(✓ k ˜✓) := D
KL

(⇡
✓

k ⇡
˜

✓

). We
will use ✓

old

to denote the previous policy parameters that
we wish to improve upon.

The preceding section shows that ⌘(✓)  L
✓

old

(✓) +

CDmax

KL

(✓
old

, ✓), with equality at ✓ = ✓
old

. Thus, by per-
forming the following minimization, we are guaranteed to
improve the true objective ⌘:

minimize

✓

[L
✓

old

(✓) + CDmax

KL

(✓
old

, ✓)] .

In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy
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Mixture policy update considered by Kakade and Langford:
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• Optimize surrogate loss + KL penalty => guaranteed 
improvement to ⌘
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Review

• Devised a surrogate loss L, which is a tractable local 
approximation to 

• KL-penalized surrogate loss majorities the true objective

• We don’t have an algorithm yet: need to construct     from 
sampled data, and make approximations

⌘

⌘
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L⇡(⇡̃) = ⌘(⇡) +
X

s

⇢⇡(s)
X

a

⇡̃(a|s)A⇡(s, a)
Improvement&Theorem
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Trust Region Policy Optimization

the distribution of the initial state s
0

, and � 2 (0, 1) is the
discount factor.

Let ⇡ denote a stochastic policy ⇡ : S ⇥ A ! [0, 1], and
let ⌘(⇡) denote its expected discounted cost:
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The following useful identity expresses the expected cost
of another policy ⇡̃ in terms of the advantage over ⇡, accu-
mulated over timesteps (see Kakade & Langford (2002) for
the proof, which we also reprise in Appendix A using the
notation in this paper):
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Let ⇢
⇡

be the (unnormalized) discounted visitation fre-
quencies
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This equation implies that any policy update ⇡ ! ⇡̃ that
has a non-positive expected advantage at every state s, i.e.,P
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(s, a), improves
the policy if there is at least one state-action pair with a
negative advantage value and nonzero state visitation prob-
ability (otherwise it has converged). However, in the ap-
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estimation and approximation error, that there will be some

states s for which the expected advantage is positive (i.e.,
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(s) on ⇡̃ makes Equation (2) difficult to op-
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Equation (4) implies that a sufficiently small step ⇡
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that improves L

⇡✓
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will also improve ⌘, but does not give
us any guidance on how big of a step to take. To address
this issue, Kakade & Langford (2002) proposed a policy
updating scheme called conservative policy iteration, for
which they could provide explicit lower bounds on the im-
provement of ⌘.

To define the conservative policy iteration update, let ⇡
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be the following mixture policy:
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update:

⌘(⇡
new

)L
⇡

old

(⇡
new

)+

2✏�

(1� �(1� ↵))(1� �)
↵2, (6)
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This bound is only slightly weaker when ↵ ⌧ 1, which
is typically the case in the conservative policy iteration
method of Kakade & Langford (2002). Note, however, that
so far this bound only applies to mixture policies gener-
ated by Equation (5). This policy class is unwieldy and
restrictive in practice, and it is desirable for a practical pol-
icy update scheme to be applicable to all general stochastic
policy classes.

Trust Region Policy Optimization

3 Monotonic Improvement Guarantee for
General Stochastic Policies

Equation (6), which applies to conservative policy itera-
tion, implies that a policy update that improves the right-
hand side is guaranteed to improve the true expected cost
objective ⌘. Our principal theoretical result is that the pol-
icy improvement bound in Equation (6) can be extended
to general stochastic policies, rather than just mixture po-
lices, by replacing ↵ with a distance measure between ⇡
and ⇡̃. Since mixture policies are rarely used in practice,
this result is crucial for extending the improvement guaran-
tee to practical problems. The particular distance measure
we use is the total variation divergence, which is defined
by D

TV

(p k q) =
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2

P
i

|p
i

� q
i

| for discrete probability
distributions p, q.1 Define Dmax

TV

(⇡, ⇡̃) as
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(s, a)]|. Then Equation (8) holds.

We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than ↵ can be coupled, so that they are
equal with probability 1�↵. The second proof uses pertur-
bation theory to prove a slightly stronger version of Equa-
tion (8), with a more favorable definition of ✏ that depends
on ⇡̃.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): D

TV

(p k q)2  D
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(p k q). Let
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Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (10). Note that for now, we assume exact evaluation of
the advantage values A

⇡

.

It follows from Equation (10) that Algorithm 1 is guaran-
teed to generate a sequence of monotonically improving
policies ⌘(⇡
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Thus, by minimizing M
i

at each iteration, we guarantee
that the true objective ⌘ is non-increasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.

Algorithm 1 Approximate policy iteration algorithm guar-
anteeing non-increasing expected cost ⌘

Initialize ⇡
0

.
for i = 0, 1, 2, . . . until convergence do

Compute all advantage values A
⇡i(s, a).

Solve the constrained optimization problem
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end for

is a type of majorization-minimization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, M

i

is the surrogate function that
majorizes ⌘ with equality at ⇡

i

. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of ⇡
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.

Since we consider parameterized policies ⇡
✓

(a|s) with pa-
rameter vector ✓, we will overload our previous notation
to use functions of ✓ rather than ⇡, e.g. ⌘(✓) :
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to denote the previous policy parameters that
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The preceding section shows that ⌘(✓)  L
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. Thus, by per-
forming the following minimization, we are guaranteed to
improve the true objective ⌘:

minimize
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[L
✓

old

(✓) + CDmax

KL
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old

, ✓)] .

In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy
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Equation (6), which applies to conservative policy itera-
tion, implies that a policy update that improves the right-
hand side is guaranteed to improve the true expected cost
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icy improvement bound in Equation (6) can be extended
to general stochastic policies, rather than just mixture po-
lices, by replacing ↵ with a distance measure between ⇡
and ⇡̃. Since mixture policies are rarely used in practice,
this result is crucial for extending the improvement guaran-
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We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than ↵ can be coupled, so that they are
equal with probability 1�↵. The second proof uses pertur-
bation theory to prove a slightly stronger version of Equa-
tion (8), with a more favorable definition of ✏ that depends
on ⇡̃.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): D
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Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (10). Note that for now, we assume exact evaluation of
the advantage values A

⇡

.

It follows from Equation (10) that Algorithm 1 is guaran-
teed to generate a sequence of monotonically improving
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at each iteration, we guarantee
that the true objective ⌘ is non-increasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.
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is a type of majorization-minimization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, M
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majorizes ⌘ with equality at ⇡
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. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of ⇡
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.

Since we consider parameterized policies ⇡
✓
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rameter vector ✓, we will overload our previous notation
to use functions of ✓ rather than ⇡, e.g. ⌘(✓) :
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, ✓), with equality at ✓ = ✓
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forming the following minimization, we are guaranteed to
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In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy
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3 Monotonic Improvement Guarantee for
General Stochastic Policies

Equation (6), which applies to conservative policy itera-
tion, implies that a policy update that improves the right-
hand side is guaranteed to improve the true expected cost
objective ⌘. Our principal theoretical result is that the pol-
icy improvement bound in Equation (6) can be extended
to general stochastic policies, rather than just mixture po-
lices, by replacing ↵ with a distance measure between ⇡
and ⇡̃. Since mixture policies are rarely used in practice,
this result is crucial for extending the improvement guaran-
tee to practical problems. The particular distance measure
we use is the total variation divergence, which is defined
by D

TV

(p k q) =

1

2

P
i

|p
i

� q
i

| for discrete probability
distributions p, q.1 Define Dmax

TV

(⇡, ⇡̃) as
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), and let ✏ =
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s

|E
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0
(a|s) [A⇡

(s, a)]|. Then Equation (8) holds.

We provide two proofs in the appendix. The first proof ex-
tends Kakade and Langford’s result using the fact that the
random variables from two distributions with total varia-
tion divergence less than ↵ can be coupled, so that they are
equal with probability 1�↵. The second proof uses pertur-
bation theory to prove a slightly stronger version of Equa-
tion (8), with a more favorable definition of ✏ that depends
on ⇡̃.

Next, we note the following relationship between the to-
tal variation divergence and the KL divergence (Pollard
(2000), Ch. 3): D
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(p k q)2  D
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(p k q). Let
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Algorithm 1 describes an approximate policy iteration
scheme based on the policy improvement bound in Equa-
tion (10). Note that for now, we assume exact evaluation of
the advantage values A

⇡

.

It follows from Equation (10) that Algorithm 1 is guaran-
teed to generate a sequence of monotonically improving
policies ⌘(⇡
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Thus, by minimizing M
i

at each iteration, we guarantee
that the true objective ⌘ is non-increasing. This algorithm

1Our result is straightforward to extend to continuous states
and actions by replacing the sums with integrals.

Algorithm 1 Approximate policy iteration algorithm guar-
anteeing non-increasing expected cost ⌘
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.
for i = 0, 1, 2, . . . until convergence do
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end for

is a type of majorization-minimization (MM) algorithm
(Hunter & Lange, 2004), which is a class of methods that
also includes expectation maximization. In the terminol-
ogy of MM algorithms, M

i

is the surrogate function that
majorizes ⌘ with equality at ⇡

i

. This algorithm is also rem-
iniscent of proximal gradient methods and mirror descent.

Trust region policy optimization, which we propose in the
following section, is an approximation to Algorithm 1,
which uses a constraint on the KL divergence rather than
a penalty to robustly allow large updates.

4 Optimization of Parameterized Policies
In the previous section, we considered the policy optimiza-
tion problem independently of the parameterization of ⇡
and under the assumption that the policy can be evaluated
at all states. We now describe how to derive a practical
algorithm from these theoretical foundations, under finite
sample counts and arbitrary parameterizations.
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to denote the previous policy parameters that
we wish to improve upon.

The preceding section shows that ⌘(✓)  L
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(✓) +
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, ✓), with equality at ✓ = ✓
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. Thus, by per-
forming the following minimization, we are guaranteed to
improve the true objective ⌘:

minimize
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(✓) + CDmax
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old

, ✓)] .

In practice, if we used the penalty coefficient C recom-
mended by the theory above, the step sizes would be very
small. One way to take larger steps in a robust way is to use
a constraint on the KL divergence between the new policy
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and the old policy, i.e., a trust region constraint:

minimize
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L
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subject to Dmax

KL

(✓
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, ✓)  �.

This problem imposes a constraint that the KL divergence
is bounded at every point in the state space. While it is
motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use
a heuristic approximation which considers the average KL
divergence:
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We therefore propose solving the following optimization
problem to generate a policy update:

minimize
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L
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(✓) (13)
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KL

(✓
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, ✓)  �.

Similar policy updates have been proposed in prior work
(Bagnell & Schneider, 2003; Peters & Schaal, 2008b; Pe-
ters et al., 2010), and we compare our approach to prior
methods in Section 7 and in the experiments in Section 8.
Our experiments also show that this type of constrained
update has similar empirical performance to the maximum
KL divergence constraint in Equation (12).

5 Sample-Based Estimation of the Objective
and Constraint

The previous section proposed a constrained optimization
problem on the policy parameters (Equation (13)), which
optimizes an estimate of the expected cost ⌘ subject to a
constraint on the change in the policy at each update. This
section describes how the objective and constraint func-
tions can be approximated using Monte Carlo simulation.

We seek to solve the following optimization problem, ob-
tained by expanding L
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in Equation (13):
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We first replace
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(s) [. . . ] in the objective by the ex-
pectation 1
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E
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[. . . ]. Next, we replace the advan-
tage values A
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by the Q-values Q
✓
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in Equation (14),
which only changes the objective by a constant. Last, we
replace the sum over the actions by an importance sampling
estimator. Using q to denote the sampling distribution, the
contribution of a single s

n

to the loss function is
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Figure 1. Left: illustration of single path procedure. Here, we
generate a set of trajectories via simulation of the policy and in-
corporate all state-action pairs (sn, an) into the objective. Right:
illustration of vine procedure. We generate a set of “trunk” tra-
jectories, and then generate “branch” rollouts from a subset of the
reached states. For each of these states sn, we perform multiple
actions (a1 and a2 here) and perform a rollout after each action,
using common random numbers (CRN) to reduce the variance.

Our optimization problem in Equation (14) is exactly
equivalent to the following one, written in terms of expec-
tations:

minimize
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E
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All that remains is to replace the expectations by sample
averages and replace the Q value by an empirical estimate.
The following sections describe two different schemes for
performing this estimation.

The first sampling scheme, which we call single path, is
the one that is typically used for policy gradient estima-
tion (Bartlett & Baxter, 2011), and is based on sampling
individual trajectories. The second scheme, which we call
vine, involves constructing a rollout set and then perform-
ing multiple actions from each state in the rollout set. This
method has mostly been explored in the context of policy it-
eration methods (Lagoudakis & Parr, 2003; Gabillon et al.,
2013).

5.1 Single Path

In this estimation procedure, we collect a sequence of
states by sampling s

0

⇠ ⇢
0

and then simulating the pol-
icy ⇡
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old

for some number of timesteps to generate a trajec-
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, . . . , s
T�1

, a
T�1

, s
T
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(s, a) is computed at each state-action pair
(s

t
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t

) by taking the discounted sum of future costs along
the trajectory.

5.2 Vine

In this estimation procedure, we first sample s
0

⇠ ⇢
0

and
simulate the policy ⇡

✓i to generate a number of trajecto-
ries. We then choose a subset of N states along these tra-
jectories, denoted s

1

, s
2

, . . . , s
N

, which we call the “roll-
out set”. For each state s

n

in the rollout set, we sample
K actions according to a

n,k

⇠ q(·|s
n

). Any choice of
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This problem imposes a constraint that the KL divergence
is bounded at every point in the state space. While it is
motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use
a heuristic approximation which considers the average KL
divergence:
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We therefore propose solving the following optimization
problem to generate a policy update:
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Similar policy updates have been proposed in prior work
(Bagnell & Schneider, 2003; Peters & Schaal, 2008b; Pe-
ters et al., 2010), and we compare our approach to prior
methods in Section 7 and in the experiments in Section 8.
Our experiments also show that this type of constrained
update has similar empirical performance to the maximum
KL divergence constraint in Equation (12).

5 Sample-Based Estimation of the Objective
and Constraint

The previous section proposed a constrained optimization
problem on the policy parameters (Equation (13)), which
optimizes an estimate of the expected cost ⌘ subject to a
constraint on the change in the policy at each update. This
section describes how the objective and constraint func-
tions can be approximated using Monte Carlo simulation.

We seek to solve the following optimization problem, ob-
tained by expanding L
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Figure 1. Left: illustration of single path procedure. Here, we
generate a set of trajectories via simulation of the policy and in-
corporate all state-action pairs (sn, an) into the objective. Right:
illustration of vine procedure. We generate a set of “trunk” tra-
jectories, and then generate “branch” rollouts from a subset of the
reached states. For each of these states sn, we perform multiple
actions (a1 and a2 here) and perform a rollout after each action,
using common random numbers (CRN) to reduce the variance.

Our optimization problem in Equation (14) is exactly
equivalent to the following one, written in terms of expec-
tations:
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All that remains is to replace the expectations by sample
averages and replace the Q value by an empirical estimate.
The following sections describe two different schemes for
performing this estimation.

The first sampling scheme, which we call single path, is
the one that is typically used for policy gradient estima-
tion (Bartlett & Baxter, 2011), and is based on sampling
individual trajectories. The second scheme, which we call
vine, involves constructing a rollout set and then perform-
ing multiple actions from each state in the rollout set. This
method has mostly been explored in the context of policy it-
eration methods (Lagoudakis & Parr, 2003; Gabillon et al.,
2013).

5.1 Single Path

In this estimation procedure, we collect a sequence of
states by sampling s
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hold in the setting of this paper, but we omit them for
simplicity.

7 Connections with Prior Work
As mentioned in Section 4, our derivation results in a pol-
icy update that is related to several prior methods, provid-
ing a unifying perspective on a number of policy update
schemes. The natural policy gradient (Kakade, 2002) can
be obtained as a special case of the update in Equation (13)
by using a linear approximation to L and a quadratic ap-
proximation to the D

KL

constraint, resulting in the follow-
ing problem:

minimize
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h
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old
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.

The update is ✓
new

= ✓
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)

�1r
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L(✓)
��
✓=✓

old

,
where the Lagrange multiplier � is typically treated as
an algorithm parameter. This differs from our approach,
which enforces the constraint at each update. Though this
difference might seem subtle, our experiments demonstrate
that it significantly improves the algorithm’s performance
on larger problems.

We can also obtain the standard policy gradient update by
using an `

2

constraint or penalty:

minimize
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h
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The policy iteration update can also be obtained by solving
the unconstrained problem minimize

⇡

L
⇡

old

(⇡), using L as
defined in Equation (3).

Several other methods employ an update similar to Equa-
tion (13). Relative entropy policy search (REPS) (Peters
et al., 2010) constrains the state-action marginals p(s, a),
while TRPO constrains the conditionals p(a|s). Unlike
REPS, our approach does not require a costly nonlinear op-
timization in the inner loop. Levine and Abbeel (2014) also
use a KL divergence constraint, but its purpose is to encour-
age the policy not to stray from regions where the estimated
dynamics model is valid, while we do not attempt to esti-
mate the system dynamics explicitly. Pirotta et al. (2013)
also build on and generalize Kakade and Langford’s results,
and they derive different algorithms from the ones here.

8 Experiments
We designed our experiments to investigate the following
questions:

Figure 2. 2D robot models used for locomotion experiments.
From left to right: swimmer, hopper, walker. The hopper and
walker present a particular challenge, due to underactuation and
contact discontinuities.

1. What are the performance characteristics of the single
path and vine sampling procedures?

2. TRPO is related to prior methods (e.g. natural policy
gradient) but makes several changes, most notably by
using a fixed KL divergence rather than a fixed penalty
coefficient. How does this affect the performance of
the algorithm?

3. Can TRPO be used to solve challenging large-scale
problems? How does TRPO compare with other
methods when applied to large-scale problems, with
regard to final performance, computation time, and
sample complexity?

To answer (1) and (2), we compare the performance of
the single path and vine variants of TRPO, several ablated
variants, and a number of prior policy optimization algo-
rithms. With regard to (3), we show that both the single
path and vine algorithm can obtain high-quality locomo-
tion controllers from scratch, which is considered to be a
hard problem. We also show that these algorithms produce
competitive results when learning policies for playing Atari
games from images using convolutional neural networks
with tens of thousands of parameters.

8.1 Simulated Robotic Locomotion

We conducted the robotic locomotion experiments using
the MuJoCo simulator (Todorov et al., 2012). The three
simulated robots are shown in Figure 2. The states of the
robots are their generalized positions and velocities, and the
controls are joint torques. Underactuation, high dimension-
ality, and non-smooth dynamics due to contacts make these
tasks very challenging. The following models are included
in our evaluation:

1. Swimmer. 10-dimensional state space, linear re-
ward for forward progress and a quadratic penalty on
joint effort to produce the cost cost(x, u) = �v

x

+

10

�5kuk2. The swimmer can propel itself forward by
making an undulating motion.

2. Hopper. 12-dimensional state space, same cost as the
swimmer, with a bonus of +1 for being in a non-
terminal state. We ended the episodes when the hop-
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This problem imposes a constraint that the KL divergence
is bounded at every point in the state space. While it is
motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use
a heuristic approximation which considers the average KL
divergence:
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Similar policy updates have been proposed in prior work
(Bagnell & Schneider, 2003; Peters & Schaal, 2008b; Pe-
ters et al., 2010), and we compare our approach to prior
methods in Section 7 and in the experiments in Section 8.
Our experiments also show that this type of constrained
update has similar empirical performance to the maximum
KL divergence constraint in Equation (12).

5 Sample-Based Estimation of the Objective
and Constraint

The previous section proposed a constrained optimization
problem on the policy parameters (Equation (13)), which
optimizes an estimate of the expected cost ⌘ subject to a
constraint on the change in the policy at each update. This
section describes how the objective and constraint func-
tions can be approximated using Monte Carlo simulation.
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Figure 1. Left: illustration of single path procedure. Here, we
generate a set of trajectories via simulation of the policy and in-
corporate all state-action pairs (sn, an) into the objective. Right:
illustration of vine procedure. We generate a set of “trunk” tra-
jectories, and then generate “branch” rollouts from a subset of the
reached states. For each of these states sn, we perform multiple
actions (a1 and a2 here) and perform a rollout after each action,
using common random numbers (CRN) to reduce the variance.
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All that remains is to replace the expectations by sample
averages and replace the Q value by an empirical estimate.
The following sections describe two different schemes for
performing this estimation.

The first sampling scheme, which we call single path, is
the one that is typically used for policy gradient estima-
tion (Bartlett & Baxter, 2011), and is based on sampling
individual trajectories. The second scheme, which we call
vine, involves constructing a rollout set and then perform-
ing multiple actions from each state in the rollout set. This
method has mostly been explored in the context of policy it-
eration methods (Lagoudakis & Parr, 2003; Gabillon et al.,
2013).
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This problem imposes a constraint that the KL divergence
is bounded at every point in the state space. While it is
motivated by the theory, this problem is impractical to solve
due to the large number of constraints. Instead, we can use
a heuristic approximation which considers the average KL
divergence:
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We therefore propose solving the following optimization
problem to generate a policy update:
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Similar policy updates have been proposed in prior work
(Bagnell & Schneider, 2003; Peters & Schaal, 2008b; Pe-
ters et al., 2010), and we compare our approach to prior
methods in Section 7 and in the experiments in Section 8.
Our experiments also show that this type of constrained
update has similar empirical performance to the maximum
KL divergence constraint in Equation (12).

5 Sample-Based Estimation of the Objective
and Constraint

The previous section proposed a constrained optimization
problem on the policy parameters (Equation (13)), which
optimizes an estimate of the expected cost ⌘ subject to a
constraint on the change in the policy at each update. This
section describes how the objective and constraint func-
tions can be approximated using Monte Carlo simulation.
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generate a set of trajectories via simulation of the policy and in-
corporate all state-action pairs (sn, an) into the objective. Right:
illustration of vine procedure. We generate a set of “trunk” tra-
jectories, and then generate “branch” rollouts from a subset of the
reached states. For each of these states sn, we perform multiple
actions (a1 and a2 here) and perform a rollout after each action,
using common random numbers (CRN) to reduce the variance.
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The following sections describe two different schemes for
performing this estimation.

The first sampling scheme, which we call single path, is
the one that is typically used for policy gradient estima-
tion (Bartlett & Baxter, 2011), and is based on sampling
individual trajectories. The second scheme, which we call
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ing multiple actions from each state in the rollout set. This
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TRPO in limit as δ → 0  

(since second deriv of KL 
is Fisher Information Matrix)

• How to solve this constrained optimization problem at every iteration? 

• Authors used a direction search based on quadratic approximation of the 
constraint and then line search to find the step so that constraint is not 
violated and the surrogate cost goes down.

Relative entropy policy search 
(Peters et al. 2010) constraints the 
state-action marginals p(a,s) instead 
of p(a|s)
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Figure 3. Neural networks used for the locomotion task (top) and
for playing Atari games (bottom).

per fell over, which was defined by thresholds on the
torso height and angle.

3. Walker. 18-dimensional state space. For the walker,
we added a penalty for strong impacts of the feet
against the ground to encourage a smooth walk rather
than a hopping gait.

We used � = 0.01 for all experiments. See Table 2 in the
Appendix for more details on the experimental setup and
parameters used. We used neural networks to represent the
policy, with the architecture shown in Figure 3, and further
details provided in Appendix D. To establish a standard
baseline, we also included the classic cart-pole balancing
problem, based on the formulation from Barto et al. (1983),
using a linear policy with six parameters that is easy to opti-
mize with derivative-free black-box optimization methods.

The following algorithms were considered in the compar-
ison: single path TRPO; vine TRPO; reward-weighted re-
gression (RWR), an EM-like policy search method (Peters
& Schaal, 2007); relative entropy policy search (REPS)
(Peters et al., 2010); cross-entropy method (CEM), a
gradient-free method (Szita & Lörincz, 2006); covariance
matrix adaption (CMA), another gradient-free method
(Hansen & Ostermeier, 1996); natural gradient, the classic
natural policy gradient algorithm (Kakade, 2002), which
differs from single path by the use of a fixed penalty coef-
ficient (Lagrange multiplier) instead of the KL divergence
constraint; empirical FIM, identical to single path, except
that the FIM is estimated using the covariance matrix of
the gradients rather than the analytic estimate; max KL,
which was only tractable on the cart-pole problem, and uses
the maximum KL divergence in Equation (12), rather than
the average divergence, allowing us to evaluate the quality
of this approximation. The parameters used in the exper-
iments are provided in Appendix E. For the natural gra-

Figure 4. Learning curves for locomotion tasks, averaged across
five runs of each algorithm with random initializations. Note that
for the hopper and walker, a score of �1 is achievable without any
forward velocity, indicating a policy that simply learned balanced
standing, but not walking.

dient method, we swept through the possible values of the
penalty coefficient (i.e. the step size) in factors of three, and
took the best coefficient according to the final performance.

Learning curves showing the cost averaged across five runs
of each algorithm are shown in Figure 4. Single path and
vine TRPO solved all of the problems, yielding the best
solutions. Natural gradient performed well on the two
easier problems, but was unable to generate hopping and
walking gaits that made forward progress. These results
provide empirical evidence that constraining the KL di-
vergence is a more robust way to choose step sizes and
make fast, consistent progress, compared to using a fixed
penalty. CEM and CMA are derivative-free algorithms,
hence their sample complexity scales unfavorably with the
number of parameters, and they performed poorly on the
larger problems. The max KL method learned somewhat
slower than our final method, due to the more restric-
tive form of the constraint, but overall the result suggests
that the average KL divergence constraint has a similar ef-
fect as the theorecally justified maximum KL divergence.
Videos of the policies learned by TRPO may be viewed on
the project website: http://sites.google.com/

site/trpopaper/.

Note that TRPO learned all of the gaits with general-
purpose policies and simple cost functions, using minimal
prior knowledge. This is in contrast with most prior meth-
ods for learning locomotion, which typically rely on hand-
architected policy classes that explicitly encode notions of
balance and stepping (Tedrake et al., 2004; Geng et al.,
2006; Wampler & Popović, 2009).

8.2 Playing Games from Images

To evaluate TRPO on a partially observed task with com-
plex observations, we trained policies for playing Atari

Policy parameterization as a neural network
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hold in the setting of this paper, but we omit them for
simplicity.

7 Connections with Prior Work
As mentioned in Section 4, our derivation results in a pol-
icy update that is related to several prior methods, provid-
ing a unifying perspective on a number of policy update
schemes. The natural policy gradient (Kakade, 2002) can
be obtained as a special case of the update in Equation (13)
by using a linear approximation to L and a quadratic ap-
proximation to the D

KL

constraint, resulting in the follow-
ing problem:
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where the Lagrange multiplier � is typically treated as
an algorithm parameter. This differs from our approach,
which enforces the constraint at each update. Though this
difference might seem subtle, our experiments demonstrate
that it significantly improves the algorithm’s performance
on larger problems.

We can also obtain the standard policy gradient update by
using an `

2

constraint or penalty:
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The policy iteration update can also be obtained by solving
the unconstrained problem minimize

⇡

L
⇡

old

(⇡), using L as
defined in Equation (3).

Several other methods employ an update similar to Equa-
tion (13). Relative entropy policy search (REPS) (Peters
et al., 2010) constrains the state-action marginals p(s, a),
while TRPO constrains the conditionals p(a|s). Unlike
REPS, our approach does not require a costly nonlinear op-
timization in the inner loop. Levine and Abbeel (2014) also
use a KL divergence constraint, but its purpose is to encour-
age the policy not to stray from regions where the estimated
dynamics model is valid, while we do not attempt to esti-
mate the system dynamics explicitly. Pirotta et al. (2013)
also build on and generalize Kakade and Langford’s results,
and they derive different algorithms from the ones here.

8 Experiments
We designed our experiments to investigate the following
questions:

Figure 2. 2D robot models used for locomotion experiments.
From left to right: swimmer, hopper, walker. The hopper and
walker present a particular challenge, due to underactuation and
contact discontinuities.

1. What are the performance characteristics of the single
path and vine sampling procedures?

2. TRPO is related to prior methods (e.g. natural policy
gradient) but makes several changes, most notably by
using a fixed KL divergence rather than a fixed penalty
coefficient. How does this affect the performance of
the algorithm?

3. Can TRPO be used to solve challenging large-scale
problems? How does TRPO compare with other
methods when applied to large-scale problems, with
regard to final performance, computation time, and
sample complexity?

To answer (1) and (2), we compare the performance of
the single path and vine variants of TRPO, several ablated
variants, and a number of prior policy optimization algo-
rithms. With regard to (3), we show that both the single
path and vine algorithm can obtain high-quality locomo-
tion controllers from scratch, which is considered to be a
hard problem. We also show that these algorithms produce
competitive results when learning policies for playing Atari
games from images using convolutional neural networks
with tens of thousands of parameters.

8.1 Simulated Robotic Locomotion

We conducted the robotic locomotion experiments using
the MuJoCo simulator (Todorov et al., 2012). The three
simulated robots are shown in Figure 2. The states of the
robots are their generalized positions and velocities, and the
controls are joint torques. Underactuation, high dimension-
ality, and non-smooth dynamics due to contacts make these
tasks very challenging. The following models are included
in our evaluation:

1. Swimmer. 10-dimensional state space, linear re-
ward for forward progress and a quadratic penalty on
joint effort to produce the cost cost(x, u) = �v

x

+

10

�5kuk2. The swimmer can propel itself forward by
making an undulating motion.

2. Hopper. 12-dimensional state space, same cost as the
swimmer, with a bonus of +1 for being in a non-
terminal state. We ended the episodes when the hop-

Cost function: move forward and don’t fall over

Policy parametrization as a neural network

Cost function: move forward and don’t fall over

diagram John Schulman



Constraint Optimization in iLQR

KL-divergences between trajectories:

DGD with iterative LQR

KL-divergences between trajectories

negative entropy

KL-divergences between trajectories

negative entropy

KL-divergences between trajectories

negative entropy



KL-divergences between trajectories

Reminder: Linear-Gaussian solves

If we can get         into the cost, we can just use iLQR!
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DGD with iterative LQR

We have the following constrained optimization problem:



We will solve it with dual gradient descent
Digression: dual gradient descent

how to maximize? Compute the gradient!

How to maximize?  Compute gradients! 
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DGD with iterative LQR
DGD with iterative LQR

This is the constrained problem we want to solve:



DGD with iterative LQR

DGD with iterative LQR

this is the hard part, 
everything else is easy!1. Find
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DGD with iterative LQR
DGD with iterative LQR



DGD with iterative LQR
DGD with iterative LQR

diagram Sergey Levine



So far..

• Learning local linear dynamics models

• Using KL divergence constraints for global and local policy search



Learning general policies by imitating local controllers

• Each iLQR controller achieves the task from a specific initial state 
x_0 

• We want to learn general policies by mimicking such controllers. 
Why?

• This policy  will succeed under different forms of initial 
conditions. We hope with optimal controllers in the loop to do 
better than simple trial and error and require less human 
demonstrations than imitating human experts directly. However, 
ti will require measuring the cost at training time.

• Those general policies can be: a non parametric nearest neighbor 
local controller selection or a neural network policy    

⇡✓(x)



Imitating local controllers with DAGGER
Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer 
by labelling additional data points resulting from applying the current policy

1. train                   from human data

2. run                   to get dataset

3. Ask human to label          with actions

4. Aggregate:

5. GOTO step 1.

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69
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Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.
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Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �
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not have to specify an initial policy ⇡̂
1

before getting data from the expert’s behavior.
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that are irrelevant as the policy improves. We will typically use �
1

= 1 so that we do

not have to specify an initial policy ⇡̂
1

before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1

N

PN
i=1

�i ! 0 as N ! 1. The simple, parameter-free version of the

⇡✓(ut|ot)

ut

⇡✓(ut|ot) D⇡ = {o1, ..., oM}

D⇡

D⇡⇤ = {o1, u1, ..., oN , uN}

D⇡⇤  D⇡⇤ [D⇡

• repeatedly query the expert

• execute an unsafe/partially trained policy



DAGGER

• DAGGER assumes that the learner can imitate the expert. The 
expert comes close to the learner by matching the state 
distributions.

• Guided policy search does not require to execute a partially trained 
policy on hardware. The teacher further adapts to actions the 
learner can imitate.

Guided policy search, Levine and Koltun 2013



Guided Policy Search

Even simpler…

generic trajectory 
optimization, solve 
however you want

• How can we impose constraints on trajectory optimization?

• Impose constraints on trajectory optimization:

Guided policy search, Levine and Koltun 2013



Solve it using dual gradient descent
Review: dual gradient descent



A small tweak to DGD: augmented Lagrangian

A small tweak to DGD: augmented Lagrangian

• Still converges to correct 
solution

• When far from solution, 
quadratic term tends to 
improve stability

• Closely related to alternating 
direction method of 
multipliers (ADMM)

• Still converges to correct 
solution

• When far from solution, 
quadratic term tends to 
improve stability

• Closely related to 
alternating direction method 
of multipliers (ADMM)



Constraining trajectory optimization with dual gradient 
descentConstraining trajectory optimization with dual 

gradient descentConstraining trajectory optimization with dual 
gradient descent

Constraining trajectory optimization with dual 
gradient descentLagrangian:

Augmented Lagrangian:



Stochastic (Gaussian) GPS

Stochastic (Gaussian) GPS

1. Optimize        with respect to some surrogate

2. Optimize     with respect to some supervised objective

3. Increment or modify dual variables 

p(⌧)
c̃(xt, ut)

✓

�



GPS with dual gradient descent
Constraining trajectory optimization with dual 
gradient descent

1. Find                                 (e.g. via iLQR)
2. Find                                 (e.g. via SGD)
3.

⌧  argmin
⌧

L̄(⌧, ✓,�)

✓  argmin
✓

L̄(⌧, ✓,�)

� �+ ↵
dg

d�



Guided policy search
Stochastic (Gaussian) GPS with local models



Guided policy search discussion

• Can be interpreted as constrained trajectory optimization method
• Can be interpreted as imitation of an optimal control expert, since step 

2 is just supervised learning
• The optimal control “teacher” adapts to the learner, and avoids actions 

that the learner can’t mimic

1. Find                                 (e.g. via iLQR)
2. Find                                 (e.g. via SGD)
3.

Guided policy search

⌧  argmin
⌧

L̄(⌧, ✓,�)

✓  argmin
✓

L̄(⌧, ✓,�)

� �+ ↵
dg

d�

• Can be interpreted as constrained trajectory optimization method
• Can be interpreted as imitation of an optimal control expert, since 

step 2 is just supervised learning
• The optimal control “teacher” adapts to the learner, and avoids 

actions that the learner can’t mimic



DAGGER vs. GPS

• Dagger does not require an adaptive expert

• Any expert will do, so long as states from learned policy can be 
labeled

• Assumes it is possible to match expert’s behavior up to bounded 
loss

• Not always possible (e.g. partially observed domains)

• GPS adapts the “expert” behavior

• Does not require bounded loss on initial expert (expert will 
change)

• It does require initial state resets!



1. Train                from controller data
2. Run              to get dataset
3. Ask computer to label      with actions
4. Aggregate:

simple stochastic policy:

Imitating MPC: PLATO algorithm

Imitating MPC: PLATO algorithm

Kahn, Zhang, Levine, Abbeel ‘16

⇡✓(ut|ot) D = {o1, u1, ..., oN , uN}
⇡̂(ut|ot) D⇡ = {o1, ..., oM}

D⇡ ut

D  D [D⇡

⇡̂(ut|xt) = N (Ktxt + kt,⌃ut)

⇡̂(ut|xt) = argmin
⇡̂

TX

t0=t

E⇡̂[c(xt0 , ut0)] + �DKL(⇡̂(ut|xt)k⇡✓(ut|ot))

Imitating MPC: PLATO algorithm

path replanned!



Imitating MPC: PLATO algorithm

simple stochastic policy: ⇡̂(ut|xt) = N (Ktxt + kt,⌃ut)

⇡̂(ut|xt) = argmin
⇡̂

TX

t0=t

E⇡̂[c(xt0 , ut0)] + �DKL(⇡̂(ut|xt)k⇡✓(ut|ot))

⇡✓(ut|ot) Learner: trained from observations!

⇡̂(ut|xt) = argmin
⇡̂

TX

t0=t

E⇡̂[c(xt0 , ut0)] + �DKL(⇡̂(ut|xt)k⇡✓(ut|ot))*

⇡✓(ut|ot)
⇡̂(ut|xt)

Imitating MPC: PLATO algorithm

Replanning = Model Predictive Control (MPC)
                - control from images
                - control from states

PLATO: Policy learning using Adaptive trajectory optimization, Kahn et al. 2016



Observability at train and test time

training time test time

Input Remapping Trick
min
p,✓

E⌧⇠p(⌧)[c(⌧)] s.t. p(ut|xt) = ⇡✓(ut|ot)

PLATO: Policy learning using Adaptive trajectory optimization, Kahn et al. 2016



Example: End-to-End training of Deep Visuomotor Policies

• Learning Neural Network general policies using direct RGB (no object detector, 
pose estimator or trackers) as input and trajectory optimization as supervision

• State: positions and velocities of joints, not object pose.

• Tasks: Swimmer, octopus etc, and peg insertion into a hole

• The RGB input is transformed to a set of x,y key points at the final layer to avoid 
overfitting

• Pretraining of the video CNN using object pose regression

• The environment is fully observable at training time (e.g., objects at known 
positions so that we know the desired state of the robotic arm), but not at test time

• Train and test environments are overall similar, due to the small amount of training 
data that can be collected in real world with instrumented training scenarios

End-to-End training of Deep Visuomotor Policies, Levine et al



Example: End-to-End training of Deep Visuomotor Policies

End-to-End training of Deep Visuomotor Policies, Levine et al.

CNN Vision-Based Policy



Example: End-to-End training of Deep Visuomotor Policies

End-to-End training of Deep Visuomotor Policies, Levine et al



Example: Learning Dexterous Manipulation Policies from 
Experience and Imitation

Learning Dexterous Manipulation Policies from Experience and Imitation, Kumar et al

• Learning Neural Network and nearest neighbor based general policies using 
pose state as input and trajectory optimization as supervision

• State: positions and velocities of joints and objects—optitrack motion capture 
is used for object tracking at training time, and at test time for NNeib policy

• Tasks: dexterous manipulation, hard because of contact!

• iLQR fails without initialization from a demonstration!

• Nearest Neighbor using the object pose to determine which local policy to 
follow—requires saving all local controllers and knowing object pose (for 
effective matching)

• Neural net: can learn a mapping directly from on board sensing to actions, no 
vision, using GPS 



Example: Learning Dexterous Manipulation Policies from 
Experience and Imitation

Learning Dexterous Manipulation Policies from Experience and Imitation, Kumar et al



Embed to Control: A Locally Linear latent Dynamics model 
for Control from raw Images

Embed to Control: A Locally Linear latent Dynamics model for Control from raw Images, Water et al.

• Infer a low-dimensional latent state space in which optimal control 
(LQR) can be used.

• Latent state should: 1) reconstruct the input image 2) predict the 
next state and then next observation 3) prediction should be locally 
linearizable



Embed to Control: A Locally Linear latent Dynamics model 
for Control from raw Images

Embed to Control: A Locally Linear latent Dynamics model for Control from raw Images, Water et al.



Summary

• Learning local dynamics models

• i-LQR with learn local models

• Trust region constraint for policy optimization: TRPO and i-LQR

• Learning general policies by imitating i-LQR local controllers 

• DAGGER

• Guided policy search



Next lecture

• Differentiable model-based reinforcement learning

• Recurrent networks and optimal control

• Back-propagate directly to the policy using temporal unfolding-
differentiable dynamics- back propagate through discrete actions 
(stochastic sampling on the forward pass), or through continuous 
actions (re-paramertization trick)


