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So far in the course

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.

Good: simplest, cheapest form of supervision
Bad: High sample complexity
Where is it successful so far?
In simulation, where we can afford a lot of trials, easy to parallelize

not in robotic systems:
1. action execution takes long
2. we cannot afford to fail
3. safety concerns

Learning from Demonstration for Autonomous Navigation in Complex Unstructured



Reward shaping

|ldeally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

2.\We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010



The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.



Imitation Learning

For taking this action interdependence into account, numerous
formulations have been proposed:

Indirect: Learning the latent /goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning

Experts can be:
- Humans

- Optimal or near Optimal Planners/Controllers



Outline

This lecture:
 Inverse reinforcement learning
«  Max margin planning
«  Maximum entropy IRL
- Adversarial Imitation learning

« Value lteration Networks



Inverse Reinforcement Learning

Dynamics Probability
Model T distribution over next
_ _ states given current
Describes desirability state and action
of being in a state. J
v
Reward R?_lnforqement Controller/
Function R earning / Policy =*

Optimal Control
arg max, E[>>, v/ R(s;)|7] Prescribes action to
take for each state

Diagram: Pieter Abbeel

Given 7T, let’s recover R!



Problem Setup

e Given:
State space, action space + Dynamics (sometimes) Ts q|St+1|S¢t, @)
No reward function - Teacher’s demonstration:

S0, a0, S1,0A1, 52,02, ...
(= trace of the teacher’s policy 7")

e |Inverse RL
« Can we recover R?

 Apprenticeship learning via inverse RL

- Can we then use this R to find a good policy?

« Behavioral cloning (last lecture)

- Can we directly learn the teacher’s policy using supervised learning?



Assumptions (for now)

- Known Dynamics (transition model) 1
- Reward is a linear function over fixed state features @



Inverse RL with linear costs/rewards

Expert trajectory B

(x1,a1) = (x3,a3) = (x3,a3) = - = (X, ay)

Demonstration

Expert trajectory cost



Principle: Expert is optimal

* Find a reward function RB* which explains the expert behavior

 Find R* such that
ED» 7'R*(se)|n*] > E[> 4'R*(s¢)|m] Vn

t=0 t=0



Feature Based Reward Function

(We assume reward is linear over features)
Let R(s) = w! ¢(s), where w € R™ and ¢ : S — R"

8D ' R(so)ln] = E[Y_ v'w’¢(se)|7]

= wlE[) _~'¢(s)|7]

t=0 expected discounted sum of feature
values or feature expectations—
— W dependent on state visitation
distributions

Sub/ting into E[Y ~'R*(s¢)|7*] > E[> 7' R*(s¢)|w] Vn

*T’

p(m) v

gives us: | Find w* such thatw** p(7*) > w



Challenges: Reward function is ambiguous

(We assume reward is linear over features)
Let R(s) = w! ¢(s), where w € R™ and ¢ : S — R"

8D ' R(so)ln] = E[Y_ v'w’¢(se)|7]

= w E[Y 7'¢(s:)|n]

t=0 expected discounted sum of feature
values or feature expectations—
— W dependent on state visitation
distributions

Sub/ting into E[Y ~'R*(s¢)|7*] > E[> 7' R*(s¢)|w] Vn

*T’

u(m) Vm

gives us: | Find w* such thatw** p(7*) > w



Max-margin Classifiers

"Minimize ||w|| subjectto y; (w - x; —b) > 1,fori =1, ..., n"



Max-margin Classifiers

« We are given a training dataset of n points of the form

(fla y1)7 cee (fna yn)

« Where the y; are either 1 or -1, each indicating the class to which
the point z; belongs. Each z; is a p-dimensional real vector.
We want to find the “maximum-margin hyperplane” that divides the
group of points x; , for which y; = 1 from the group of points for

which y; = —1, which is defined so that the distance between the
hyperplane and the nearest point x; from either group is
maximized.

« Any hyperplane can be written as the set of points x satisfying
Ww-Z—b=0

where w is the normal vector the the hyperplane



Max-margin Classifiers

 Let x1be any point in the first hyperplane and consider the line L
that passes through x;in the direction of the normal vector a. An
equation for L is given by x1 + at forall ¢ € R. Now find the
intersection of L and the second hyperplane:

a'(z+at)=by<=t=(by—a'x1)/a’a=(by—b1)/a’a

- Therefore the intersection pointis =2 = =1 + a(by — b1)/a’ a. The
distance between these two points is the distance between the
hyperplanes:

b2 20t =
aTa fal

|71 — x| =



Max Margin Planning

» Standard max margin:

min||wl|3
w

s.t. w!p(r*) >whp(r)+1 Vr

Maximum Margin Planning, Ratliff et al. 2006



Max Margin Planning

» Standard max margin:

min|w|[3

s.t. w!p(r*) >whp(r)+1 Vr
» “Structured prediction” max margin:

min|uw|3

X

s.t. wlp(n*) > w! w(r) +m(n*, 7)) Vn

* Justification: margin should be larger for policies that are
very different from 7™

« Example: m(7™,7) = number of states in which 7*and
disagree

Maximum Margin Planning, Ratliff et al. 2006



Expert Suboptimality

« Structured prediction max margin with slack variables:

minuw|} + C¢

s.t. w!p(n*) > wlp(n) +m(n*,m) — € Vn

 (Can be generalized to multiple MDPs (could also be same MDP
with different initial state)

min [|w|z + 025( )

w, &)

st w ,u(ﬂ(z)*)zw /L(?T(i)) ((Z)* ) £y 1)



Complete Max-margin Formulation

minfw] + Y ¢

s.t. wl p(r W) > wl w(m@) + m(rW* 7@y —¢@ g 7@

* Challenge: very large number of constraints. Solutions:

iterative constraint generation

Maximum Margin Planning, Ratliff et al. 2006



Constraint Generation

lterate II') = {} for all ¢ and then iterate

* Solve  min||lw||2 C’Zg(’i)

st wl (@) > wT u(m@®) + m(r®@*, 70y — ¢y 70 ¢ 1)

* For current w, find most violated constraint for all ¢ by solving:

max w? p(7) + m(rO*, 79

for all 5 add ™% to II®

* |f no constraint violations were found, we are done

Maximum Margin Planning, Ratliff et al. 2006



Max Margin Planning

trained to follow roads

mode 1 - traning mock2 1 - [ea'hed cost map over novel reglon made | - earmnad path over nowel reglon

trained to hide in the trees

mode 2 - fraining mcdde 2 - learned cost mep cvar novel ragion mode 2 - kamed path over rowvel recion

Maximum Margin Planning, Ratliff et al. 2006



Q: Why don’t we train a CNN given a patch to predict the

trajectory?

trained to follow roads

mode 1 - traning mock2 1 - [ea'hed cost map over novel reglon made | - earmnad path over nowel reglon

trained to hide in the trees

mode 2 - fraining mcdde 2 - learned cost mep cvar novel ragion mode 2 - kamed path over rowvel recion

Maximum Margin Planning, Ratliff et al. 2006



L earning to step (mimicking footsteps)

Where should we place the foot next”







| earned Cost Function Examples




L earned Cost Function Examples




L earned Cost Function Examples




https://www.youtube.com/watch?v=mKLRBNIIChrk



https://www.youtube.com/watch?v=mKLRNllChrk

Feature Matching

* Inverse RL starting point: find a reward function such that the
expert outperforms other policies

Let R(s) = w’ ¢(s), where w € R", and ¢: S — R"

Find w* such that w*! pu(7*) > w* pu(n) Vr

* QObservation in Abbeel and Ng, 2004: for a policy 7 to be
guaranteed to perform as well as the expert policy ux it suffices
that the feature expectations match:

() — p(m™) |1 < e

Implies that for all w with [|[w||e < 1:
™ () —w p(r)| < e

Abbeel and Ng 2004



Apprenticeship Learning [Abbeel & Ng, 2004 ]

- Assume Ry (s) = w' ¢(s) for a feature map ¢ : S — R"
* I|nitialize: pick some policy o

o lteratefor 1t =1,2,...:
e “Guess’” the reward function:

Find a reward function such that the teacher maximally
outperforms all previously found policies

IMax ’y
’7,’(U||”UJ||2§1

st wlp(r®) > wu(n)+~y Vr € {mo,m,...,mi1}

- Find optimal control policy 7 for the current guess of the
reward function R,

- v < e/2 exit the algorithm



Hmmmm..... Ambiguity again

e There is no reward function and no optimal policy that matches that
matches almost all behavior

e There are infinitely many stochastic behaviors (policies or mixtures of
policies) that can match feature counts....

e How can we possibly pick a good one?



Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features




Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

7. ‘DC\




Maximum Entropy Inverse Optimal Control

Roads have unknown costs linear in features
Paths have unknown costs, sum of road costs

(’Zk..@@

OTf,
Let's marry probabmstlc reasoning W|th optlmal control and reward functions:

- the costs induce a distribution over paths! P(\tau)
- path probability based on unknown cost



Feature matching using path probabillities

Features f can be:

! # Bridges crossed

Feature matching:

Z P(T’L)fﬁ :%

PathT,,;




Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

# Miles of interstate Z P(r)f _7
PathT,,;

“If a driver uses136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
Interstate and 12 bridges in expectation for
those same start-destination pairs.”




Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

# Miles of interstate Z P(r)f,. = f
PathT,,;

“Many distributions over paths can match
feature counts, and some will be very different
from observed behavior. In our simple example,
the model could produce plans that avoid the
interstate and bridges for all routes except one,
which drives in circles on the interstate for 136
miles and crosses 12 bridges”




Which path distribution to pick?

Features f can be:

# Bridges crossed

Feature matching:

NN # \Miles of interstate Z P(r)f.. =1
g . ‘ /) Ti
| R PathT,,;

& ‘ # Stoplights The one that satisfies feature count constraints
13 l without over-committing!




Maximum Entropy Inverse Optimal Control

» Maximizing the entropy over paths:  As Uniform As possible

* While matching feature counts (and being a probability
distribution):

ZP(T)fT — fdem

» P(r)=1

T



Maximum Entropy Principle

 Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of the
observed data under the maximum entropy (exponential family) distribution

(Jaynes 1957)

1 T IS 0" fs.
P 7/9 — 0 sz’ — S5 €T, 57
milf) = Z5)° 700)°

Z(0,s) = Z e Irs
TS

Strong Preference for Low Cost Paths
Equal Cost Paths Equally Probable




MaxEntlOC: Learning \theta

 Maximizing the entropy of the distribution over paths subject to the
feature constraints from observed data implies that we maximize
the likelihood of the observed data under the maximum entropy

(exponential family) distribution (Jaynes 1957)

0 :argmeaxL(H) = arg max Z log P(7|6)

examples

* The gradient is the difference between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies,

ZP T‘Q ZDszfsz

state V|S|tat|on frequencies!



Dynamic Programming for State visitation frequencies

Backward pass
I. Set Zsterminal =1
2. Recursively compute for /V iterations

i reward(s; |6
La;; = E P(sg|si,aij)e ( |)Z8k
k

Zsz- — Z Zai,j T l{sizsterminal}

ai,j
Local action probability computation
Za. .
2,7
s,

3. P(CLZ’J‘SZ') =

Forward pass
4. Set Dy, + = P(si = Sinitial)
5. Recursively compute for ¢ = 1 to NV

Dsk,H—l — ZZDsi,tp(ai,j‘Si)P(Skz‘ai,ja5'1',)
Si Qi j

Summing frequencies

6. D, = > Dy,
t



Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)
Bridges Bridges
crossed: 3 crossed: ?

Miles of Miles of
Interstate: Interstate:
20.7 ?

?

31




Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)

Bridges
crossed:

Bridges
crossed: 3

Miles of
Interstate:
20.7

Stoplights

7.4 .. 1

-2.6




Learning from Demonstration

Demonstrated Behavior Model Behavior (Expectation)
Bridges Bridges —
crossed: 3 crossed: 4.7

—

Miles of
Interstate:
20.7

_Miles of
Interstate:




Limitations of MaxEntlOC

* Cost was assumed linear over features f

 Dynamics T were assumed known

Next:

+ General function approximations for cost cy: Finn et al. 2016
- Unknown Dynamics -> sample based approximations for the

partition function Z: Boularias et al. 2011, Kalakrishnan et al. 2013,
Finn et al. 2016



MaxEnt |OC general cost function

0
TED
Cost of a trajectory is ~ p(T) = 1 xp(—Cy(T))
decomposed over costs Z
of individual states \
7 - / exp(—Cy(7))dr
Co(T) = Zce(xt,ut)

t



MaxEnt |OC general cost function

TED
1
Costof atrajectoryis  p(7) = — exp(—Cy(7))
decomposed over costs Z

of individual states \Z / ( C ( ))d
— eXpl—0Cpg\T T

Co(T) = Z co(xy, us)

t

Befor

Cg(ut, ut) e HTf(ut, Xt)



MaxEnt |OC general cost function

max Z log pe, (7)

T&D

1
Cost of a trajectory is p(T) = —= eXp C@ (7'))

decomposed over costs
of individual states \ /

Co(T) = Z co(xy, us)

t

exp(—

INn the form of a loss function

Befor Lioc(0) = N Z co(7;) + log Z

ce(ut,ut) = QTf(ut,Xt) T4 EDdemo



Approximating Z with Importance Sampling




MaxEntlOC with Importance Sampling




MaxEntlOC with Importance Sampling

1
Lioc(0) = + 2 colm) +logZ
Ti € Ddemo
B 1 exp(—cy(7;))
~y 2 colm) Hog g 3o ==

T: € Ddemo T € Dsamp



MaxEntlOC with Importance Sampling

exp(—ceo(75))
q(7;)

w4y =

dL10c B 1 dcy 1 dcy
B -N 2 a7 2 Wiy



Adapting the sampling distribution g

What should be the background sampling distribution q?
- Uniform: Boularias et al. 2011
- In the vicinity of demonstrations: Kalakrishnan et al. 2013

- Refine it over time! Finn at al. 2016: Interleave I0OC with policy
optimization, then sample trajectories according to the policy -> better
trajectories (have much higher likelihood) guided by your current
estimate of the cost c_theta



MaxEntlOC with Adaptive Importance Sampling

1: Initialize g (7) as either a random initial controller or from
demonstrations

. for iteration: = 1to I do

Generate samples Dy,j from qx (7)

Append samples: Dsamp ¢— Dsamp U Diraj

(Use Dsamp to update cost ¢y using gradient descent )

QJ_I:date qr (7) using Dy; and the method from (Levine & J
A

AR ATl o

bbeel, 2014) to obtain qx+1(7)
. end for
. return optimized cost parameters € and trajectory distribu-
tion q(7)

o0

This can be any RL, planning algorithm that given rewards computes a policy
(the forward RL problem), e.g. Ho and Ermon 2016 used TRPO

Given expert demonstrations and policy sampled trajectories improve
rewards/costs (Inverse RL)



MaxEntlOC with Adaptive Importance Sampling

~ )
initial human
distribution q,, demonstrations
| /\ \ | /
generate policy & @ @
samples from D g
g - QAR
& 1@
Update cost using

\_/samples & demos

update g w.r.t. cost
policy g cost C

Diagram from Chelsea Finn



MaxEntlOC with Adaptive Importance Sampling

4 )
initial human
distribution q, demonstrations

‘]/ /\ \ | j
generate policy ® ® @
samples from e e

P : AN DEPED
OGS,

RS Update cost using
| generator | samples & demos
l B dlscrlmmator ;!

update g w.r.t. cost
policy g (partially optimize) cost C

Diagram from Chelsea Finn



Generative Adversarial Networks

D(x): the probability that x came from the data rather than the generator

min max E_{x\sim p_data(x)}[log D(x)] + E_{z\sim p_z(z)}[log( |-
- P D(G(2)))]

Real Data x

QsA
B Discriminator

Generator

z ~ uniform([0, 1])



MaxEntlOC with Adaptive Importance Sampling

4 )
initial human
distribution q, demonstrations

‘]/ /\ \ | j
generate policy ® ® @
samples from e e

P : AN DEPED
OGS,

RS Update cost using
| generator | samples & demos
l B dlscrlmmator ;!

update g w.r.t. cost
policy g (partially optimize) cost C

Diagram from Chelsea Finn



Performance (scaled)

Case Study: Generative Adversarial Imitation Learning

1.0
0.8
0.6

04}
0.2}

0.0

- demonstrations from TRPO-optimized policy
- use TRPO as a policy optimizer
- OpenAl gym tasks
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 Why we need to have this separate optimization over cost, and
then separately planning/RL over this cost to find the policy?
Because the dynamics where unknown..

* Let’s assume they are known.

« Can we imitate the expert and backdrop through all the way till the
rewards simply by imitating expert behavior (e.g., through
supervised learning!!), in an end-to-end fashion?



Value lteration Sub-Network

Each iteration of VI may be seen as passing the previous value function
V. and reward function R through a convolution layer and max-pooling

layer.
Qn(s,a) = R(s,a) +7)_,, P(s'|s,a)V,(s')
Vay1(s) = max, Q,(s,a)
Each channel in the convolution layer

orresponds to the Q -function for a
/Zpeoific action

Vi Modul7/
| _-Max-pooling

| Prev. Value | —1 >

Reward Q v

T 117 [SURTPUURRRR § SRR -0
-] | convolution kernel

\\ weights correspond to

"~ the discounted

i
’ -
|

/

K recurrence

By recurrently applying a convolution layer K times, ~ (ransition probabilities

K iterations of VI are effectively performed.

Value lteration Networks, Tamar et al. 2016



Value lteration Network

* Notice that the optimal action at each state depends only on the
value function of its immediate neighbors->locality->attention

7*(5) = arg max, R(s,a) +~Y . P(7|5,a)V*5)

Value Iteration Network VI Module
fel, 5 7lmop M| Vs i§ SR . v
Observation = : ~‘ i ;"':R et quh | B
(Y)(\] > me;ﬂon E'—-- L_D--‘ P1 |
U(s)— Reactive Policy EL « |
* To estimate the optimal action in each state, | only need to use the

value functions in the vicinity of the state, then train and CNN with
a standard architecture

Value lteration Networks, Tamar et al. 2016



Value lteration Network

* This particular CNN architecture allows propagation of the state
value far in space, as opposed to a standard CNN over the same
state space: reactive policies, versus planning based policies

Value Iteration Network V1 Module
_________ s I Prev. Value | :
a * R _|Planon | | e ,..E l = SR —
e, pmop Azt "‘ i Re;a"’ L | v
Observation : ii o 5 qﬁj o
: o(s) »| Attention i tos '--r__]“ = '
: — | . . | 3 1
(i | S ' —J Reactive Policy | :
mrelalo(s), 20(s)) K recurrence
Domain VIN CNN FCN
Prediction | Success | Traj. | Pred. | Succ. | Traj. | Pred. | Succ. | Traj.
loss rate difft. loss rate difft. loss rate difft.

8 X 8 0.004 99.6% | 0.001 | 0.02 | 97.9% | 0.006 | 0.01 | 97.3% | 0.004
16 x 16 0.05 99.3% | 0.089 | 0.10 | 87.6% | 0.06 | 0.07 | 88.3% | 0.05
28 X 28 0.11 97 % 0.086 | 0.13 | 742% | 0.078 | 0.09 | 76.6% | 0.08

Value Iteration Networks, Tamar et al. 2016



