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So far..
• Most Reinforcement Learning literature: Learning policies without knowing how 

the world works (model-free)

• Model based RL: build a model from data and use it to sample experience as 
opposed to just use experience by interacting with the world

• Imitation learning: learn from a teacher -> most recent and successful formulations 
suggest to train a classifier/regressor with data augmentation/scheduling to handle 
compounding errors 

• Planners (e.g. Monte Carlo Tree Search)-> Search for actions while knowing how 
the world works (model-based)->Search in Discrete space.

• Imitation learning: learn from a planner: imitate MCTS to learn to play Atari games 
better than what you would get from model-free RL

• Sidd assumed he knew some simplified models of Physics and that allowed him to 
do formidable look-aheads using MCTS and particle trajectories.



Today’s lecture

• Most Reinforcement Learning literature: Learning policies without knowing how the world 
works (model-free)

• Model based RL: build a model from data and use it to sample experience as opposed to just 
use experience by interacting with the world

• Imitation learning: learn from a teacher -> most recent and successful formulations suggest to 
train a classifier/regressor with data augmentation/scheduling to handle compounding errors 

• Planners (e.g. Monte Carlo Tree Search)-> Search for actions while knowing how the world 
works (model-based)->Search in Discrete space.

• Imitation learning: learn from a planner: imitate MCTS to learn to play Atari games better than 
what you would get from model-free RL

• Sidd assumed he knew some simplified models of Physics and that allowed him to do 
formidable look-aheads using MCTS and particle trajectories.

• Optimal Control: Search for actions while knowing how the world works (model-based) -> 
Search in Continuous space. (We will use derivates).



Today’s lecture

• Optimal Control, trajectory optimization formulation

• Special but important case: Linear dynamics, quadratic costs 
(LQR)

• iterative-LQR / Differential Dynamic programming for Non-linear 
dynamical systems

• Examples of when it works and when it does not

• Learning Dynamics: Global Models



Next two lectures

• Learning Dynamics: Local Models

• Learning local or global controllers with a trust region based on KL 
divergence of their trajectory distributions (i-LQR, TRPO)

• Imitating Optimal Controllers to find general policies: execute 
desired task from any initial state 

• Successful examples from the literature



Optimal Control (Open Loop)
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• The optimal control problem:



Optimal Control (Open Loop)

• Solution:

• Sequence of controls    and resulting state sequence 

• In general non-convex optimization problem, can be solved with 
sequential convex programming (SCP): https://stanford.edu/class/
ee364b/lectures/seq_slides.pdf
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• The optimal control problem:

https://stanford.edu/class/ee364b/lectures/seq_slides.pdf
https://stanford.edu/class/ee364b/lectures/seq_slides.pdf


Optimal Control (Closed Loop a.k.a. MPC)

Given:!!

For!t=0,!1,!2,!…,!T!

!  Solve!

!  Execute!ut 

!  Observe!resul3ng!state,!

Op3mal!Control!(Closed!Loop)!

=!“Model!Predic3ve!Control”!
!
Ini3alize!with!solu3on!from!t!F!1!to!solve!fast!at!3me!t!
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For

• Solve

• Execute 

• Observe resulting state,

•   Initialize with solution from         to solve fast at time        
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Shooting methods vs collocation methods

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

Collocation Method: optimize over actions and state, with constraints
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Diagram: Sergey Levine



Shooting methods vs collocation

shooting method: optimize over actions only

Shooting Method: optimize over actions only

min
u1,...,uT

c(x1, u1) + c(f(x1, u1), u2) + · · ·+ c(f(f(...)...), uT )

Diagram: Sergey Levine

Indeed, x are not necessary since every u results (following the dynamics) 
in a state sequence x, for which in turn the cost can be computed
• Not clear how to initialize in a way that nudges towards a goal state

Shooting methods vs collocation methods



Bellman’s Curse of Dimensionality

Bellman’s!Curse!of!Dimensionality!
!  n:dimensional!state!space!

!  Number!of!states!grows!exponenBally!in!n!(for!fixed!number!of!
discreBzaBon!levels!per!coordinate)!

!  In!pracBce!
!  DiscreBzaBon!is!considered!only!computaBonally!feasible!up!to!5!or!6!

dimensional!state!spaces!even!when!using!
!  Variable!resoluBon!discreBzaBon!
!  Highly!opBmized!implementaBons!

• n-dimensional state space

• Number of states grows exponentially in n (for fixed number of 
discretization levels per coordinate)

• In practice

• Discretization is considered only computationally feasible up to 
5 or 6 dimensional state spaces even when using

• Variable resolution discretization

• Highly optimized implementations 



Linear case: LQR

Linear case: LQR

linear quadratic

• Very special case: Optimal Control for Linear Dynamic Systems and Quadratic 
Cost (a.k.a. LQ setting)

• Can solve continuous state-space optimal control problem exactly
• Running time: O(Tn3)



Linear dynamics: Newtonian Dynamics
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What is the state x?

• position and velocities of the robotic joints

• position and velocity of the object being manipulated

In most robotic tasks, state is hand engineered and includes: 

Those are both known: the robot knows its state and we perceive the state 
of the objects in the world. In tasks where we do not even want to bother 
with object state, we just concatenate the robotic state across multiple time 
steps to implicitly infer the interaction (collision with the object)

Later lecture: learning the state from raw pixels, Embed to Control



What is the cost

•  

     is a final goal configuration I want to achieve

• In the final time step, you can add a term with higher weight:

 Final cost

• For object manipulation,      includes not only desired pose of the 
end effector but also desired pose of the objects

c(xt, ut)

c(xt, ut) = kxt � x

⇤k+ �kutk

x

⇤

c(xT , uT ) = 2(kxT � x

⇤k+ �kuT k)

x

⇤



Linear Quadratic Regulator (LQR)
Linear case: LQR

Definitions:
              : optimal action value function, cost-to-go at state     executing controlQ(xt, ut) xt ut

V (xt) = min
ut

Q(xt, ut)

   
                 : optimal state value function, cost-to-go from state

V (xt) xt



Linear Quadratic Regulator (LQR)
Linear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

uT



Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

Cost matrices 
for the last time step:

uT



Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Linear case: LQR

Linear case: LQR

Linear case: LQRLinear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

Cost matrices 
for the last time step:

uT



Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )

Linear case: LQR
Linear case: LQR

cost-to-go as a function of 
the final state



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We can eliminate x_T by writing only in terms of quantities of T-1!

We have written            only in terms of                      !V (xT ) xT�1, uT�1



Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We have written optimal action value function                          only in terms of
                    !

Q(xT�1, uT�1)

xT�1, uT�1



Linear case: LQR

Linear case: LQR

Diagram: Sergey Levine

x_0
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Stochastic dynamics

f(xt, ut) = Ft


xt

ut

�
+ ft

xt+1 ⇠ p(xt+1|xt, ut)

ut = Ktxt + ktSame control solution                         for stochastic but Gaussian dynamics:

Stochastic dynamics



Non-linear case:Use iterative approximations!

Nonlinear case: DDP/iterative LQR

First order Taylor expansion for the dynamics around a trajectory                      :

Nonlinear case: DDP/iterative LQR

x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQR

Second  order Taylor expansion for the cost around a trajectory                     :x̂t, ût, t = 1 · · ·T



Nonlinear case: DDP/iterative LQRInitialization: Given     , pick a random control sequence                and obtain 
corresponding state sequence 

Iterative LQR (i-LQR)
x̂0 û0...ûT

x̂0...x̂T

8t

8t

8t
8t

8t

8t

ut = ût +Kt(xt � x̂T ) + kt



Nonlinear case: DDP/iterative LQR

Iterative LQR (i-LQR)

Linear approximation around        

Find                         so 
that                  minimizes the 
linear approximation

Go to the                        and

8t

8t

8t

8t

8t
x̂, û

�ut, t = 1...T

ût +�ut

x̂

0 = x̂+�xt û0 = û+�ut

Initialization: Given     , pick a random control sequence                and obtain 
corresponding state sequence 

x̂0 û0...ûT
x̂0...x̂T

8tut = ût +Kt(xt � x̂T ) + kt



Iterative LQR (i-LQR)

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

i-LQR approximates Newton’s method for solving:

Same as with Newton method, since the original objective is non-convex, the 
optimization can get stuck in local minima.
What are we missing to be exact Newton’s method?



Differential Dynamic Programming
Nonlinear case: DDP/iterative LQR

Second order approximation for the dynamics:

The resulting method is called differential dynamic programming.

Reference: Jacobson and Mayne, “Differential dynamic programming”, 1970



Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR
The quadratic approximation in invalid too far away from the reference trajectory

More principled ways of doing this for stochastic policies in the next lecture

Nonlinear case: DDP/iterative LQR

line search for \alpha

Instead of finding the argmin i do a line search

Run forward pass with real nonlinear dynamics and ut = ût +Kt(xt � x̂T ) + ↵kt



• So far we have been planning (e.g. 100 steps) and then we close our eyes 
and hope our modeling was accurate enough..

• At convergence of iLQR and DDP, we end up with linearization around the 
(state, input) trajectory the algorithm converged to.

• In practice: the system could not be on this trajectory due to perturbations / 
initial state being off / dynamics model being off / …

• Can we handle such noise better?

Nonlinear case: DDP/iterative LQR



Model Predictive Control
• Yes! If we close the loop! Model predictive control!
• Solution: at time t when asked to generate control input u_t, we could re-

solve the control problem using iLQR or DDP over the time steps t through T

Case study: nonlinear model-predictive control

• Re-planning entire trajectory is often impractical  ->  in practice: replay over 
horizon H (receding horizon control)



i-LQR: When it works 

Synthesis and stabilization of complex behaviors with online trajectory 
optimization, Tassa, Erez, Todorov, IROS 2012



i-LQR: When it works 
Cost: 

Direction for minimizing the cost

kxt � x

⇤k

x

⇤

xt



i-LQR: When it doesn’t work 

Cost:

Due to discontinuities of contact, the local search fails! Solution?
Initialize using a human demonstration instead of random!

kxt � x

⇤k

x

⇤

xt

Learning Dexterous manipulation Policies from Experience and Imitation, Kumar, Gupta, Todorov, Levine 2016







Learning Dynamics

• So far we assumed we knew how the world works: 

• We used discrete or continuous searches (e.g., MCTS(samples) and i-
LQR(derivatives)) to look-ahead. We got good results, better than 
model-free RL. Dynamics help.

• However knowing the transition model (other than for rigid objects) is 
unrealistic! In fact, we do not have good physics simulators easily 
accessible for even basic things like turning a wheel. A huge part 
(deformable objects, object interactions, etc ) we do not know how to 
model well.

• Even for rigid objects, where we know the equations of motion, we do 
not know the coefficients, e.g., friction, mass etc.

• Thus: instead of assuming them known, we need to learn dynamics.

Why learn the model?



Learning Dynamics

System identification: when we assume the dynamics 
equations given and only have few unknown parameters

general parametric form (no 
priors from Physics 
knowledge)

Newtonian Physics equations VS

Neural networks: tons of unknown 
parameters

Much easier to learn but suffers from under-
modeling, bad models

Very flexible, very hard to get it to 
generalize



Learning Dynamics: Regression
Search with learnt dynamics:
1. Run base policy                (e.g., random policy) to collect

2. Learn dynamics model            to minimize 

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2



Learning Dynamics: Regression
Search with learnt dynamics:

Let’s apply it:
1. A robot randomly interacts (pokes objects) and collects data (x,u,x’)
2. Fit dynamics model
3. Plan actions to accomplish a particular goal, e.g., push an object as far away as possible

Part of the 
state space 

explored during 
step 1

Part of the state 
space visited during 

step 3

What goes wrong:
state distribution 
mismatch between 
dynamics learning 
and policy execution

Does it work? No!

• Distribution mismatch problem becomes exacerbated as we use more 
expressive model classes

go right to get higher!

1. Run base policy                (e.g., random policy) to collect

2. Learn dynamics model            to minimize 

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2



Learning Dynamics: DAGGER

Can we do better?

1. Run base policy                (e.g., random policy) to collect

2. Learn dynamics model            to minimize 

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or         
i-LQR)

4. Execute those actions and add the resulting data                    to  

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

{(x, u, x0)j} D



1. Run base policy                (e.g., random policy) to collect

2. Learn dynamics model            to minimize 

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or         
i-LQR)

4. Execute those actions and add the resulting data                    to  

Learning Dynamics: DAGGER

If the action sequence is long the model errors accumulate in time.
It is impossible our dynamic model to be perfect and tolerate long chaining.
It is also not biologically plausible, e.g., humans are very bad at predicting ball 
collisions accurately.

Can we do better?

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

{(x, u, x0)j} D



1. Run base policy                (e.g., random policy) to collect

2. Learn dynamics model            to minimize 

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

4. Execute the first planned action, observe resulting state     (MPC)

5. Append               to dataset

Learning Dynamics: MPC

Can we do better?

e
v
e

r
y

 N
 s

te
p

s

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

(x, u, x0) D

x

0



Learning Dynamics (Summary)
• Regression problem: collect random samples, train dynamics, plan

• Pro: simple, no iterative procedure

• Con: distribution mismatch problem

• DAGGER: iteratively collect data, replan, collect data

• Pro: simple, solves distribution mismatch

• Con: open loop plan might perform poorly, esp. in stochastic domains

• MPC: iteratively collect data using MPC (replan at each step)

• Pro: robust to small model errors

• Con: computationally expensive, but have a planning algorithm 
available



Examples of Learning Dynamics
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Malik
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➢Predictive Physics

Learning Action-Conditioned 
Dynamics

➢Newtonian Physics
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep 
Learning, Wu et al. 
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images, 
Mottaghi et al. 



Learning Action-Conditioned Dynamics

54

Predictive Visual Models of Physics for Playing Billiards,   
K.F.*, Pulkit Agrawal*, Sergey Levine, Jitendra Malik, ICLR 2016



55

Problems: 
• Forces are translation invariant!

F
F CNN

Learning Action-Conditioned Dynamics



Object-centric prediction

F
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F

World-Centric Prediction Object-Centric Prediction
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Forces applied to 
 the centered ball

63

Displacements of 
 the centered ball

CNN



decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

conv-relu4

conv-relu3

conv-relu-pool2

conv-relu-pool1

conv-relu4

conv-relu3

conv-relu-pool2

conv-relu-pool1

64

Network Architecture



Test Time: Visual Imaginations
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For all objects

simulator visual renderer
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file:///.file/
id=6571367.7967880



Playing Billiards
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Playing Billiards
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69

F

Policy Learning

F

Learning Action 
Conditioned  Dynamics 



Handling uncertainty in prediction 

Forces applied to 
 the centered ball

Displacements of 
 the centered ball

CNN

The model presented so far was deterministic: regression
It cannot handle uncertainty! Regression to the mean:

Solutions:
• Gaussian Mixture Model
• Stochastic networks



Text/Handwriting Generation using RNNs

Besides these markets (notably a son of 
humor).

Graves et al., Sutskever et al.

Machine generated sentence:

Machine generated handwriting:



decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1

Graves et al.72

Text/Handwriting Generation using RNNs



noisenoise

decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1

Graves et al.73

Learning Dynamics from Motion Capture



decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

Encoder

Recurrent

Decoder
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Ground-truth LSTM-3LRERD CRBM NGRAM

green: conditioning
blue: generation

GP



Video prediction under multimodal future distributions

• Stochastic networks



Video prediction under multimodal future distributions

Train it with (conditional) variational autoencoder

Generator

Recognition network
During training the loss is a 
combination of KL divergence 
and reconstruction loss of the 
recognition network

KL



Video prediction under multimodal future distributions



green: input,  red: sampled future motion field and 
corresponding frame completion 

Video prediction under multimodal future distributions



more 
future 
completio
ns

more 
future 
completio
ns

green: input 
red: sampled 
future 
completion

green: input 
red: sampled 
future 
completion

Video prediction under multimodal future distributions



Global models

• Despite the abundance of research papers on the forecasting 
problem, such approaches so far have not been successful in 
aiding model predictive control

• Naturally, not all part of the state space will have accurate 
dynamics, and such inaccuracies will be exploited buy the planner

• For MPC, local models currently  dominate 



Today’s lecture

• Optimal Control, trajectory optimization formulation

• Special but important case: Linear dynamics, quadratic costs 
(LQR)

• iterative-LQR / Differential Dynamic programming for Non-linear 
dynamical systems

• Examples of when it works and when it does not

• Learning Dynamics: Global Models



Next two lectures

• Learning Dynamics: Local Models

• Learning local or global controllers with a trust region based on KL 
divergence of their trajectory distributions (i-LQR, TRPO)

• Imitating Optimal Controllers to find general policies that do not 
depend on initial state x_0

• Successful examples from the literature


