
Optimal Control, Trajectory
Optimization, Learning Dynamics

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

So far..
• Most Reinforcement Learning literature: Learning policies without knowing how

the world works (model-free)

• Model based RL: build a model from data and use it to sample experience as
opposed to just use experience by interacting with the world

• Imitation learning: learn from a teacher -> most recent and successful formulations
suggest to train a classifier/regressor with data augmentation/scheduling to handle
compounding errors

• Planners (e.g. Monte Carlo Tree Search)-> Search for actions while knowing how
the world works (model-based)->Search in Discrete space.

• Imitation learning: learn from a planner: imitate MCTS to learn to play Atari games
better than what you would get from model-free RL

• Sidd assumed he knew some simplified models of Physics and that allowed him to
do formidable look-aheads using MCTS and particle trajectories.

Today’s lecture

• Most Reinforcement Learning literature: Learning policies without knowing how the world
works (model-free)

• Model based RL: build a model from data and use it to sample experience as opposed to just
use experience by interacting with the world

• Imitation learning: learn from a teacher -> most recent and successful formulations suggest to
train a classifier/regressor with data augmentation/scheduling to handle compounding errors

• Planners (e.g. Monte Carlo Tree Search)-> Search for actions while knowing how the world
works (model-based)->Search in Discrete space.

• Imitation learning: learn from a planner: imitate MCTS to learn to play Atari games better than
what you would get from model-free RL

• Sidd assumed he knew some simplified models of Physics and that allowed him to do
formidable look-aheads using MCTS and particle trajectories.

• Optimal Control: Search for actions while knowing how the world works (model-based) ->
Search in Continuous space. (We will use derivates).

Today’s lecture

• Optimal Control, trajectory optimization formulation

• Special but important case: Linear dynamics, quadratic costs
(LQR)

• iterative-LQR / Differential Dynamic programming for Non-linear
dynamical systems

• Examples of when it works and when it does not

• Learning Dynamics: Global Models

Next two lectures

• Learning Dynamics: Local Models

• Learning local or global controllers with a trust region based on KL
divergence of their trajectory distributions (i-LQR, TRPO)

• Imitating Optimal Controllers to find general policies: execute
desired task from any initial state

• Successful examples from the literature

Optimal Control (Open Loop)

s.t. x0 = x̄0

xt+1 = f(xt, ut) t = 0, ..., T � 1

min
x,u

TX

t=0

c

t

(x
t

, u

t

)

• The optimal control problem:

Optimal Control (Open Loop)

• Solution:

• Sequence of controls and resulting state sequence

• In general non-convex optimization problem, can be solved with
sequential convex programming (SCP): https://stanford.edu/class/
ee364b/lectures/seq_slides.pdf

xu

s.t. x0 = x̄0

xt+1 = f(xt, ut) t = 0, ..., T � 1

min
x,u

TX

t=0

c

t

(x
t

, u

t

)

• The optimal control problem:

https://stanford.edu/class/ee364b/lectures/seq_slides.pdf
https://stanford.edu/class/ee364b/lectures/seq_slides.pdf

Optimal Control (Closed Loop a.k.a. MPC)

Given:!!

For!t=0,!1,!2,!…,!T!

!  Solve!

!  Execute!ut

!  Observe!resul3ng!state,!

Op3mal!Control!(Closed!Loop)!

=!“Model!Predic3ve!Control”!
!
Ini3alize!with!solu3on!from!t!F!1!to!solve!fast!at!3me!t!

min
x,u

TX

k=t

c

k

(x
k

, u

k

)

s.t. x

k+1 = f(x
k

, u

k

), 8k 2 {t, t+ 1, . . . , T � 1}
x

t

= x̄

t

x̄t+1

Given:

For

• Solve

• Execute

• Observe resulting state,

• Initialize with solution from to solve fast at time

min
x,u

TX

k=t

c

k

(x
k

, u

k

)

x̄0

t = 0, 1, 2, ..., T

s.t. xk+1 = f(xk, uk), 8k 2 {t, t+ 1, ..., T � 1}

ut

x̄t+1

xt = x̄t

t� 1 t

Shooting methods vs collocation methods

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

Collocation Method: optimize over actions and state, with constraints

min
u1,...,uT ,x1,...,xT

TX

t=1

c(x
t

, u

t

) s.t x
t

= f(x
t�1, ut�1)

Diagram: Sergey Levine

Shooting methods vs collocation

shooting method: optimize over actions only

Shooting Method: optimize over actions only

min
u1,...,uT

c(x1, u1) + c(f(x1, u1), u2) + · · ·+ c(f(f(...)...), uT)

Diagram: Sergey Levine

Indeed, x are not necessary since every u results (following the dynamics)
in a state sequence x, for which in turn the cost can be computed
• Not clear how to initialize in a way that nudges towards a goal state

Shooting methods vs collocation methods

Bellman’s Curse of Dimensionality

Bellman’s!Curse!of!Dimensionality!
!  n:dimensional!state!space!

!  Number!of!states!grows!exponenBally!in!n!(for!fixed!number!of!
discreBzaBon!levels!per!coordinate)!

!  In!pracBce!
!  DiscreBzaBon!is!considered!only!computaBonally!feasible!up!to!5!or!6!

dimensional!state!spaces!even!when!using!
!  Variable!resoluBon!discreBzaBon!
!  Highly!opBmized!implementaBons!

• n-dimensional state space

• Number of states grows exponentially in n (for fixed number of
discretization levels per coordinate)

• In practice

• Discretization is considered only computationally feasible up to
5 or 6 dimensional state spaces even when using

• Variable resolution discretization

• Highly optimized implementations

Linear case: LQR

Linear case: LQR

linear quadratic

• Very special case: Optimal Control for Linear Dynamic Systems and Quadratic
Cost (a.k.a. LQ setting)

• Can solve continuous state-space optimal control problem exactly
• Running time: O(Tn3)

Linear dynamics: Newtonian Dynamics

•

•

•

•

x

t+1 = x

t

+�tẋ

t

+�t

2
F

x

yt+1 = yt +�tẏt +�t2Fy

ẏt+1 = ẏt +�tFy

ẋ

t+1 = ẋ

t

+�tF

x

What is the state x?

• position and velocities of the robotic joints

• position and velocity of the object being manipulated

In most robotic tasks, state is hand engineered and includes:

Those are both known: the robot knows its state and we perceive the state
of the objects in the world. In tasks where we do not even want to bother
with object state, we just concatenate the robotic state across multiple time
steps to implicitly infer the interaction (collision with the object)

Later lecture: learning the state from raw pixels, Embed to Control

What is the cost

•

 is a final goal configuration I want to achieve

• In the final time step, you can add a term with higher weight:

 Final cost

• For object manipulation, includes not only desired pose of the
end effector but also desired pose of the objects

c(xt, ut)

c(xt, ut) = kxt � x

⇤k+ �kutk

x

⇤

c(xT , uT) = 2(kxT � x

⇤k+ �kuT k)

x

⇤

Linear Quadratic Regulator (LQR)
Linear case: LQR

Definitions:
 : optimal action value function, cost-to-go at state executing controlQ(xt, ut) xt ut

V (xt) = min
ut

Q(xt, ut)

 : optimal state value function, cost-to-go from state

V (xt) xt

Linear Quadratic Regulator (LQR)
Linear case: LQR

Value iteration: backward propagation!
Start from and work backwards

Linear case: LQR

uT

Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Value iteration: backward propagation!
Start from and work backwards

Linear case: LQR

Cost matrices
for the last time step:

uT

Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Linear case: LQR

Linear case: LQR

Linear case: LQRLinear case: LQR

Value iteration: backward propagation!
Start from and work backwards

Linear case: LQR

Cost matrices
for the last time step:

uT

Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer into gives us !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT) V (xT)

Linear case: LQR
Linear case: LQR

cost-to-go as a function of
the final state

Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We can eliminate x_T by writing only in terms of quantities of T-1!

We have written only in terms of !V (xT) xT�1, uT�1

Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We have written optimal action value function only in terms of
 !

Q(xT�1, uT�1)

xT�1, uT�1

Linear case: LQR

Linear case: LQR

Diagram: Sergey Levine

x_0

p(xt+1|xt, ut) = N
✓
Ft


xt

ut

�
+ ft,

X

t

◆

Stochastic dynamics

f(xt, ut) = Ft


xt

ut

�
+ ft

xt+1 ⇠ p(xt+1|xt, ut)

ut = Ktxt + ktSame control solution for stochastic but Gaussian dynamics:

Stochastic dynamics

Non-linear case:Use iterative approximations!

Nonlinear case: DDP/iterative LQR

First order Taylor expansion for the dynamics around a trajectory :

Nonlinear case: DDP/iterative LQR

x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQR

Second order Taylor expansion for the cost around a trajectory :x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQRInitialization: Given , pick a random control sequence and obtain
corresponding state sequence

Iterative LQR (i-LQR)
x̂0 û0...ûT

x̂0...x̂T

8t

8t

8t
8t

8t

8t

ut = ût +Kt(xt � x̂T) + kt

Nonlinear case: DDP/iterative LQR

Iterative LQR (i-LQR)

Linear approximation around

Find so
that minimizes the
linear approximation

Go to the and

8t

8t

8t

8t

8t
x̂, û

�ut, t = 1...T

ût +�ut

x̂

0 = x̂+�xt û0 = û+�ut

Initialization: Given , pick a random control sequence and obtain
corresponding state sequence

x̂0 û0...ûT
x̂0...x̂T

8tut = ût +Kt(xt � x̂T) + kt

Iterative LQR (i-LQR)

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

i-LQR approximates Newton’s method for solving:

Same as with Newton method, since the original objective is non-convex, the
optimization can get stuck in local minima.
What are we missing to be exact Newton’s method?

Differential Dynamic Programming
Nonlinear case: DDP/iterative LQR

Second order approximation for the dynamics:

The resulting method is called differential dynamic programming.

Reference: Jacobson and Mayne, “Differential dynamic programming”, 1970

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR
The quadratic approximation in invalid too far away from the reference trajectory

More principled ways of doing this for stochastic policies in the next lecture

Nonlinear case: DDP/iterative LQR

line search for \alpha

Instead of finding the argmin i do a line search

Run forward pass with real nonlinear dynamics and ut = ût +Kt(xt � x̂T) + ↵kt

• So far we have been planning (e.g. 100 steps) and then we close our eyes
and hope our modeling was accurate enough..

• At convergence of iLQR and DDP, we end up with linearization around the
(state, input) trajectory the algorithm converged to.

• In practice: the system could not be on this trajectory due to perturbations /
initial state being off / dynamics model being off / …

• Can we handle such noise better?

Nonlinear case: DDP/iterative LQR

Model Predictive Control
• Yes! If we close the loop! Model predictive control!
• Solution: at time t when asked to generate control input u_t, we could re-

solve the control problem using iLQR or DDP over the time steps t through T

Case study: nonlinear model-predictive control

• Re-planning entire trajectory is often impractical -> in practice: replay over
horizon H (receding horizon control)

i-LQR: When it works

Synthesis and stabilization of complex behaviors with online trajectory
optimization, Tassa, Erez, Todorov, IROS 2012

i-LQR: When it works
Cost:

Direction for minimizing the cost

kxt � x

⇤k

x

⇤

xt

i-LQR: When it doesn’t work

Cost:

Due to discontinuities of contact, the local search fails! Solution?
Initialize using a human demonstration instead of random!

kxt � x

⇤k

x

⇤

xt

Learning Dexterous manipulation Policies from Experience and Imitation, Kumar, Gupta, Todorov, Levine 2016

Learning Dynamics

• So far we assumed we knew how the world works:

• We used discrete or continuous searches (e.g., MCTS(samples) and i-
LQR(derivatives)) to look-ahead. We got good results, better than
model-free RL. Dynamics help.

• However knowing the transition model (other than for rigid objects) is
unrealistic! In fact, we do not have good physics simulators easily
accessible for even basic things like turning a wheel. A huge part
(deformable objects, object interactions, etc) we do not know how to
model well.

• Even for rigid objects, where we know the equations of motion, we do
not know the coefficients, e.g., friction, mass etc.

• Thus: instead of assuming them known, we need to learn dynamics.

Why learn the model?

Learning Dynamics

System identification: when we assume the dynamics
equations given and only have few unknown parameters

general parametric form (no
priors from Physics
knowledge)

Newtonian Physics equations VS

Neural networks: tons of unknown
parameters

Much easier to learn but suffers from under-
modeling, bad models

Very flexible, very hard to get it to
generalize

Learning Dynamics: Regression
Search with learnt dynamics:
1. Run base policy (e.g., random policy) to collect

2. Learn dynamics model to minimize

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

Learning Dynamics: Regression
Search with learnt dynamics:

Let’s apply it:
1. A robot randomly interacts (pokes objects) and collects data (x,u,x’)
2. Fit dynamics model
3. Plan actions to accomplish a particular goal, e.g., push an object as far away as possible

Part of the
state space

explored during
step 1

Part of the state
space visited during

step 3

What goes wrong:
state distribution
mismatch between
dynamics learning
and policy execution

Does it work? No!

• Distribution mismatch problem becomes exacerbated as we use more
expressive model classes

go right to get higher!

1. Run base policy (e.g., random policy) to collect

2. Learn dynamics model to minimize

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

Learning Dynamics: DAGGER

Can we do better?

1. Run base policy (e.g., random policy) to collect

2. Learn dynamics model to minimize

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or
i-LQR)

4. Execute those actions and add the resulting data to

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

{(x, u, x0)j} D

1. Run base policy (e.g., random policy) to collect

2. Learn dynamics model to minimize

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or
i-LQR)

4. Execute those actions and add the resulting data to

Learning Dynamics: DAGGER

If the action sequence is long the model errors accumulate in time.
It is impossible our dynamic model to be perfect and tolerate long chaining.
It is also not biologically plausible, e.g., humans are very bad at predicting ball
collisions accurately.

Can we do better?

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

{(x, u, x0)j} D

1. Run base policy (e.g., random policy) to collect

2. Learn dynamics model to minimize

3. Plan under the learnt dynamics to choose actions (e.g., MCTS or i-LQR)

4. Execute the first planned action, observe resulting state (MPC)

5. Append to dataset

Learning Dynamics: MPC

Can we do better?

e
v
e

r
y

 N
 s

te
p

s

⇡0(ut|xt) D = {(x, u, x0)i}

f(x, u)
X

i

kf(xi, ui)� x

0
ik2

(x, u, x0) D

x

0

Learning Dynamics (Summary)
• Regression problem: collect random samples, train dynamics, plan

• Pro: simple, no iterative procedure

• Con: distribution mismatch problem

• DAGGER: iteratively collect data, replan, collect data

• Pro: simple, solves distribution mismatch

• Con: open loop plan might perform poorly, esp. in stochastic domains

• MPC: iteratively collect data using MPC (replan at each step)

• Pro: robust to small model errors

• Con: computationally expensive, but have a planning algorithm
available

Examples of Learning Dynamics

F

47

Malik

48

49

50

51

52

53

➢Predictive Physics

Learning Action-Conditioned
Dynamics

➢Newtonian Physics
Galileo: Perceiving Physical Object Properties by Integrating a Physics Engine with Deep
Learning, Wu et al.
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images,
Mottaghi et al.

Learning Action-Conditioned Dynamics

54

Predictive Visual Models of Physics for Playing Billiards,
K.F.*, Pulkit Agrawal*, Sergey Levine, Jitendra Malik, ICLR 2016

55

Problems:
• Forces are translation invariant!

F
F CNN

Learning Action-Conditioned Dynamics

Object-centric prediction

F

56

F

World-Centric Prediction Object-Centric Prediction

57

58

59

60

61

62

Forces applied to
 the centered ball

63

Displacements of
 the centered ball

CNN

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

conv-relu4

conv-relu3

conv-relu-pool2

conv-relu-pool1

conv-relu4

conv-relu3

conv-relu-pool2

conv-relu-pool1

64

Network Architecture

Test Time: Visual Imaginations

65

For all objects

simulator visual renderer

66

file:///.file/
id=6571367.7967880

Playing Billiards

67

Playing Billiards

68

69

F

Policy Learning

F

Learning Action
Conditioned Dynamics

Handling uncertainty in prediction

Forces applied to
 the centered ball

Displacements of
 the centered ball

CNN

The model presented so far was deterministic: regression
It cannot handle uncertainty! Regression to the mean:

Solutions:
• Gaussian Mixture Model
• Stochastic networks

Text/Handwriting Generation using RNNs

Besides these markets (notably a son of
humor).

Graves et al., Sutskever et al.

Machine generated sentence:

Machine generated handwriting:

decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1

Graves et al.72

Text/Handwriting Generation using RNNs

noisenoise

decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1

Graves et al.73

Learning Dynamics from Motion Capture

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

decode3

decode-relu2

decode-relu1

lstm2

lstm1

encode-relu2

encode-relu1

Encoder

Recurrent

Decoder

74

75

Ground-truth LSTM-3LRERD CRBM NGRAM

green: conditioning
blue: generation

GP

Video prediction under multimodal future distributions

• Stochastic networks

Video prediction under multimodal future distributions

Train it with (conditional) variational autoencoder

Generator

Recognition network
During training the loss is a
combination of KL divergence
and reconstruction loss of the
recognition network

KL

Video prediction under multimodal future distributions

green: input, red: sampled future motion field and
corresponding frame completion

Video prediction under multimodal future distributions

more
future
completio
ns

more
future
completio
ns

green: input
red: sampled
future
completion

green: input
red: sampled
future
completion

Video prediction under multimodal future distributions

Global models

• Despite the abundance of research papers on the forecasting
problem, such approaches so far have not been successful in
aiding model predictive control

• Naturally, not all part of the state space will have accurate
dynamics, and such inaccuracies will be exploited buy the planner

• For MPC, local models currently dominate

Today’s lecture

• Optimal Control, trajectory optimization formulation

• Special but important case: Linear dynamics, quadratic costs
(LQR)

• iterative-LQR / Differential Dynamic programming for Non-linear
dynamical systems

• Examples of when it works and when it does not

• Learning Dynamics: Global Models

Next two lectures

• Learning Dynamics: Local Models

• Learning local or global controllers with a trust region based on KL
divergence of their trajectory distributions (i-LQR, TRPO)

• Imitating Optimal Controllers to find general policies that do not
depend on initial state x_0

• Successful examples from the literature

