
10-703 Deep RL and Controls
Homework 1
Spring 2017

February 1, 2017

Due February 17, 2017

Instructions

You have 15 days from the release of the assignment until it is due. Refer to gradescope for
the exact time due.

You may work with a partner on this assignment. Only one person should submit the
writeup and code on gradescope. Make sure you mark your partner as a collaborator on
gradescope and that both names are listed in the writeup.

Writeups should be submitted as PDF.

Problem 1

Consider an environment in which our agent requires caffeine to function1. Because caffeine
is so important to our agent, we would like the agent to find a policy that will always lead it
to the shortest path to coffee. Once the agent reaches coffee, it will stick around and enjoy
it.

In order to apply optimal control techniques such as value iteration and policy iteration,
we first need to model this scenario as an MDP. Recall that an MDP is defined as tuple
(S,A, P,R, γ), where:

S: The (finite) set of all possible states.

A: The (finite) set of all possible actions.

P : The transition function P : S×S×A→ [0, 1], which maps (s′, s, a) to P (s′|s, a), i.e., the
probability of transitioning to state s′ ∈ S when taking action a ∈ A in state s ∈ S.
Note that

∑
s′∈S P (s′|s, a) = 1 for all s ∈ S, a ∈ A.

1If it helps you can think of the agent as a graduate student.

1

1 2 3 4 5 6

1

2

3

4

5

6

Figure 1: A particular instance of the shortest path problem. The goal is for the agent
currently located in state (1, 1) to have a policy that always leads it on the shortest path to
the coffee in state (6, 6).

R: The reward function R : S × A × S → R, which maps (s, a, s′) to R(s, a, s′), i.e., the
reward obtained when taking action a ∈ A in state s ∈ S and arriving at state s′ ∈ S.

γ: The discount factor, which controls how important are rewards in the future. We have
γ ∈ [0, 1), where smaller values mean more discounting for future rewards.

In order to encode this problem as an MDP, we need to define each of the components
of the tuple for our particular problem. Note that there may be many different possible
encodings.

For the questions, in this section, consider the instance shown in Figure 1. In the figure,
the agent is at (1, 1), but it can start at any of the grid cells. The goal, displayed as a
coffee cup, is located at (6, 6). The agent is able to move one square up, down, left and
right (deterministically). Walls are represented by thick black lines. The agent cannot move
through walls. All actions are available in all states. If the agent attempts to move through
a wall, it will remain in the same state.

When the agent reaches the coffee cup, the episode ends. Another way to think of this,
is that every action in the coffee cup state, keeps the agent in the coffee cup state.

Part a (10pt)

For this section, assume we are modeling the MDP as an infinite horizon MDP. The coffee
cup is still an absorbing state.

Using the above problem description answer the following questions:

a) How many states are in this MDP? (i.e. what is |S|).

b) How many actions are in this MDP? (i.e. what is |A|).

2

c) What is the dimensionality of the transition function P?

d) Fill in the probabilities for the transition function P .

s’
s a (1,2) (1,1) (1,4) (1,3) (5, 6)
(1,1) up
(1,1) down
(1,3) up
(6,6) left

e) Describe a reward function R : S × A × S and a value of γ that will lead to an optimal
policy giving the shortest path to the coffee cup from all states.

f) Does γ ∈ (0, 1) affect the optimal policy in this case? Explain why.

g) How many possible policies are there? (All policies, not just optimal policies.)

h) What is the optimal policy? Draw the grid and label each cell with an arrows in the
direction of the optimal action. If multiple arrows, include the probability of each arrow.
There may be multiple optimal policies, pick one and show it.

i) Is your policy deterministic or stochastic?

j) Is there any advantage to having a stochastic policy? Explain.

Part b (2pt)

Now consider that our agent often goes the wrong direction because of how tired it is. Now
each action has a 10% chance of going perpendicular to the left of the direction chosen and
10% chance of going perpendicular to the right of the direction chosen. Given this change
answer the following questions:

a) Fill in the values for the transition function P .

s’
s a (1,3) (3,2) (1,4)
(2,2) up

b) Does the optimal policy change compared to Part a? Justify your answer.

c) Will the value of the optimal policy change? Explain.

3

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2: MDP for problem 1c.

Part c (4pt)

Now consider a deterministic MDP, like in Part a. But this time, the agent has a meeting
with their adviser in 5 minutes. So they need a policy that optimizes getting the coffee in
that time limit. We will model this as an episodic MDP.

Consider the case where each step takes 1 minute to execute.

4

a) Specify a reward function R : S × A× S that will lead to the policy giving the shortest
path to the coffee cup in states around the coffee cup. Try to keep the reward function
as simple as possible.

b) Refer to Figure 2. Using your reward function, Will the agent’s policy in the green shaded
region change compared to the MDP in Part a? Justify your answer.

c) Refer to Figure 2. Using your reward function, consider policy πa that in state (1, 5)
chooses action down, and a policy πb that in state (1, 5) chooses action up. How does
Vπa((1, 5)) relate to Vπb((1, 5))?

d) Consider a policy πa and a policy πb, where πa(sgreen) = πb(sgreen) and πa(sblue) 6=
πb(sblue). How do Vπa relate to Vπb? Explain.

Problem 2

In this problem you will program value iteration and policy iteration. You will use environ-
ments implementing the OpenAI Gym Environment API. For more information on the Gym
and the API see: https://gym.openai.com/. We will be working with different versions of
the FrozenLake environment 2.

In this domain the agent starts at a fixed starting position, marked with “S”. The agent
can move up, down, left and right. In the deterministic versions, the up action will always
move the agent up, the left will always move left, etc. In the stochastic versions, the up action
will move up with probability 1/3, left with probability 1/3 and right with probability 1/3.

There are three different tile types: frozen, hole, and goal. When the agent lands on a
frozen tile it receives 0 reward. When the agent lands on a hole tile it receives 0 reward
and the episode ends. When the agent lands on the goal tile it receives +1 reward and the
episode ends. We have provided you with two different maps.

States are represented as integers numbered from left to right, top to bottom starting at
zero. So the upper left corner of the 4x4 map is state 0, and the bottom right corner of the
4x4 map is state 15.

You will implement value iteration and policy iteration using the provided environments.
You may use either Python 2.7 or Python 3. Some function templates are provided for you
to fill in. Specific coding instructions are provided in the source code files.

Note: Be careful implementing value iteration and policy evaluation. Keep in mind that
in this environment the reward function depends on the current state, the current action,
and the next state. Also terminal states are slightly different. Think about the backup
diagram for terminal states and how that will affect the Bellman equation.

Coding (30 pt)

Implement the functions in the code template. Then answer the questions below using your
implementation.

2https://gym.openai.com/envs/FrozenLake-v0

5

https://gym.openai.com/
https://gym.openai.com/envs/FrozenLake-v0

Part a (20 pt)

Answer these questions for the maps Deterministic-4x4-FrozenLake-v0 and
Deterministic-8x8-FrozenLake-v0.

a) Using the environment, find the optimal policy using policy iteration. Record the time
taken for execution, the number of policy improvement steps and the total number of
policy evaluation steps. Use γ = 0.9. Use a stopping tolerance of 10−3 for the policy
evaluations.

b) What is the optimal policy for this map? Show as a grid of letters with “U”, “D”,
“L”, “R” representing the actions up, down, left, right respectively. See Figure 3 for an
example of the expected output.

c) Find the value function of this policy. Plot it as a color image, where each square shows
its value as a color. See Figure 4 for an example.

d) Find the optimal value function directly using value iteration. Record the time taken for
execution, and the number of iterations required. Use γ = 0.9 Use a stopping tolerance
of 10−3.

e) Plot this value function as a color image, where each square shows its value as a color.
See Figure 4 for an example.

f) Which algorithm was faster? Which took less iterations?

g) Are there any differences in the value function?

h) Convert the optimal value function to the optimal policy. Show the policy a grid of letters
with “U”, “D”, “L”, “R” representing the actions up, down, left, right respectively. See
Figure 3 for an example of the expected output.

i) Write an agent that executes the optimal policy. Record the total cumulative discounted
reward. Does this value match the value computed for the starting state? If not, explain
why.

LLLL

DDDD

UUUU

RRRR

Figure 3: Example policy for FrozenLake-v0

6

Figure 4: Example of value function color plot. Make sure you include the color bar or
some kind of key.

Part b (10 pt)

Answer the following questions for the maps Stochastic-4x4-FrozenLake-v0 and
Stochastic-8x8-FrozenLake-v0.

a) Using value iteration, find the optimal value function. Record the time taken for execution
and the number of iterations required. Use a stopping tolerance of 10−3. Use γ = 0.9.

b) Plot the value function as a color map like in Part a. Is the value function different
compared to the deterministic versions of the maps?

c) Convert this value function to the optimal policy and include it in the writeup.

d) Does the optimal policy differ from the optimal policy in the deterministic map? If so
pick a state where the policy differs and explain why the action is different.

e) Write an agent that executes the optimal policy. Run this agent 100 times on the map
and record the total cumulative discounted reward. Average the results. Does this value
match the value computed for the starting state? If not explain why.

Part c (4 pt)

We have provided one more version of the frozen lake environment. Now the agent receives
a −1 reward for landing on a frozen tile, 0 reward for landing on a hole, and +1 for landing
on the goal.

Answer these questions for map Deterministic-4x4-neg-reward-FrozenLake-v0.

7

a) Using value iteration, find the optimal value function. Use a stopping tolerance of 10−3.
Use γ = 0.9. Plot the value function as a color map like in Part a.

b) Is the value function different from the other deterministic 4x4 map?

c) Convert the value function to the optimal policy and include it in the writeup.

d) Is the policy different from the other deterministic 4x4 map? If so, pick a state where it
differs and explain why the action is different.

Problem 3 (10pt)

In this problem you will practice implementing an environment. Given the following environ-
ment description implement an OpenAI Gym environment that matches the specifications.

You have a server which contains three queues. Each queue can contain up to five items.
At every timestep the server is currently working on a specific queue. The server starts
the environment on queue 1. The server has four actions: service an item from the current
queue, switch to queue 1, switch to queue 2, switch to queue 3. Servicing an item from the
queue when there is an item present gives a reward of +1. When the queue is empty no
reward is given. Switching queues gives no rewards.

After each action each queue has a probability of receiving a new item: P1, P2, and P3
for queue 1, 2, and 3 respectively.

Implement this environment with the following sets of probabilities:

• P1 = 0.1, P2 = 0.9, P3 = 0.1

• P1 = 0.1, P2 = 0.1, P3 = 0.1

Problem 4 (10pt)

Consider an MDP M = (S,A, P,R, γ), where the components of M are as described in
Problem 1. In this problem, we will study some properties of value iteration. The Bellman
optimality equation for the optimal value function V ∗ : S → R, which we also write V ∗ ∈ RS,
is

V ∗(s) = max
a∈A

(∑
s′∈S

P (s′|s, a) (R(s, a, s′) + γV ∗(s′))

)
.

Define the Bellman optimality operator F∗ : RS → RS as

F∗V (s) = max
a∈A

(∑
s′∈S

P (s′|s, a) (R(s, a, s′) + γV (s′))

)
,

where F∗V (s) is shorthand for (F∗(V))(s). Note that S is finite so value functions are
essentially vectors in R|S|. The operator F∗ maps vectors in R|S| to vectors in R|S|.

Value iteration amounts to repeated application of F∗ to an arbitrary initial value func-
tion V0 ∈ RS.

8

a) Prove that V ∗ is an unique fixed point of F∗, i.e, F∗V ∗ = V ∗ and that if F∗V = V and
F∗V ′ = V ′ for two value functions V, V ′ ∈ RS, then V = V ′, i.e., V (s) = V ′(s) for all
s ∈ S.

b) Prove that (F∗)kV0 converges to V ∗ as k →∞ for any V0 ∈ RS. Consider convergence in
max-norm. The max-norm of a vector u ∈ Rd is defined as ||u||∞ = maxi∈{1,...,d} |ui|.

c) Given the optimal value function V ∗ write down the expression that recovers the optimal
policy π∗ as a function of V ∗ and the parameters of M . 3

3Actually, such a procedure works for any value function V ∈ RS . This procedure is called policy
extraction.

9

