
10-703 Deep Reinforcement Learning and Control
Assignment 2
Spring 2017

March 1, 2017

Due March 23, 00:00 AM, 2017

Instructions

You have around 15 days from the release of the assignment until it is due. Refer to Grade-
scope for the exact time due. You may work with a partner on this assignment. Only one
person should submit the writeup and code on Gradescope. Make sure you mark your part-
ner as a collaborator on Gradescope and that both names are listed in the writeup. Writeups
should be typeset in Latex and submitted as PDF.

Introduction

In this assignment, you will implement Q-learning using deep learning function approxima-
tors in OpenAI Gym. You will work with the Atari game environments, and learn how
to train a Q-network directly from pixel inputs. The goal is to understand and implement
some of the techniques that were found to be important in practice to stabilize training and
achieve better performance. As a side effect, we also expect you to get comfortable using
Tensorflow or Keras to experiment with different architectures and different hyperparameter
configurations and gain insight into the importance of these choices on final performance
and learning behavior.

The Atari environments in OpenAI Gym return observations as a 210× 160× 3 tensor of
unsigned 8-bit integers. The last dimension corresponds to the RGB channels. Remember to
convert the tensor of unsigned integers to floats when feeding it to a Tensorflow computational
graph, otherwise you may observe strange behavior.

Before starting your implementation, make sure that you have Tensorflow and the Atari
environments correctly installed. For this assignment you may choose either Enduro (Enduro-v0)
or Space Invaders (SpaceInvaders-v0). In spite of this, the observations from other Atari
games have the same size so you can try to train your models in the other games too. Note
that while the size of the observations is the same across games, the number of available
actions may be different from game to game.

1

Q-learning and variants

Due to the state space complexity of Atari environments, we represent Q-functions using a
class of parametrized function approximators Q = {Qw | w ∈ Rp}, where p is the number
of parameters. Remember that in the tabular setting, given a 4-tuple of sampled experience
(s, a, r, s′), the vanilla Q-learning update is

Q(s, a) := Q(s, a) + α

(
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

)
, (1)

where α ∈ R is the learning rate. In the function approximation setting, the update is
similar:

w := w + α

(
r + γmax

a′∈A
Qw(s′, a′)−Qw(s, a)

)
∇wQw(s, a). (2)

Q-learning can be seem as a pseudo stochastic gradient descent step on

`(w) = Es,a,r,s′

(
r + γmax

a′∈A
Qw(s′, a′)−Qw(s, a)

)2

,

where the dependency of maxa′∈AQw(s′, a′) on w is ignored, i.e., it is treated as a fixed
target.

Many of the methods that you will implement in this homework are variants of update (2),
namely in the way the targets are constructed and maintained. For example, the deep Q-
learning implementation described in [1, 2] maintains two Q-networks: the online network,
which plays the same role of the Qw terms Qw(s, a) and ∇wQw(s, a) in update (2), and the
target network, which is used in the target in update (2). The update in this case is

w := w + α

(
r + γmax

a′∈A
Qw−(s′, a′)−Qw(s, a)

)
∇wQw(s, a). (3)

The target Q-network is assigned every so often to be equal to the online Q-network, and
is kept frozen until the next assignment. This helps the stability of the learning procedure,
as with deep learning function approximators, updating the target Q-network with every
update to the online Q-network proves too unstable.

Double Q-learning [3] also maintains two Q-networks, but they do not play a fixed role
as online and target networks as in [1, 2]. Let us call the networks Qw1 and Qw2 ; at each
update step, we flip a fair coin and either do

w1 := w1 + α

(
r + γQw2(s

′, arg max
a′∈A

Qw1(s
′, a′))−Qw1(s, a)

)
∇w1Qw1(s, a) (4)

or

w2 := w2 + α

(
r + γQw1(s

′, arg max
a′∈A

Qw2(s
′, a′))−Qw2(s, a)

)
∇w2Qw2(s, a).

2

As at each update the role of Qw1 and Qw2 is determined stochastically with probability 0.5,
these networks play a symmetric role. This helps with the over-optimism of the targets in
update (2).

In this homework, we will also ask you to implement the dueling deep Q-network described
in [4]. This amounts to a slightly different Q-network architecture from the one in [1, 2]. Most
models will be trained using experience replay [1, 2], meaning that the 4-tuples (s, a, r, s′)
will be sampled from the replay buffer rather than coming directly from the online experience
of the agent.

Guidelines on hyperparameters

In this assignment you will implement improvements to the simple update Q-learning formula
that make learning more stable and the trained model more performant. We briefly comment
on the meaning of each hyperparameter and some reasonable values for them.

• Discount factor γ: 0.99.

• Learning rate α: 0.0001; typically a schedule is used where learning rates get increas-
ingly smaller.

• Exploration probability ε in ε-greedy: 0.05; typically a schedule is used where explo-
ration probabilities get increasingly smaller.

• Number of training sampled interactions with the environment: 5000000; depending on
the convergence of the learning process, fewer or more interactions may be necessary;
look at the average reward achieved in the last few episodes to test if performance
has plateaued; it is usually a good idea to consider reducing the learning rate or the
exploration probability if performance plateaus.

• Number of frames to feed to the Q-network: 4; as a single frame may not be a good
representation of the current state of the MDP (e.g., in space invaders, from a single
frame you cannot tell if the spaceships are moving left or right), multiple frames are fed
to the Q-network to compute the Q-values; note that in this case, the state effectively
is a list of last few frames.

• Input image resizing: 84 × 84 × 1: using models of moderate size in the original
210 × 160 × 3 image is computationally expensive, therefore we resize the original
image to make it more manageable.

• Replay buffer size: 1000000; this hyperparameter is used only for experience replay;
how many of the last

• Target Q-network reset interval: 10000; this hyperparameter only matters when we are
maintaining both an online and target network; after this number of updates to the
online Q-network, the target Q-network is set to be the same as the online Q-network.

• Batch size: 32; typically, rather doing the update as in (2), we use a small batch of
sampled experiences from the replay buffer; this provides better hardware utilization.

3

• ...

The implementations of the methods in this homework have multiple hyperparameters.
These hyperparameters (and others) are part of the experimental setup described in [1, 2].
For the most part, we strongly suggest you to follow the experimental setup described in each
of the papers. [1, 2] was published first; your choice of hyperparameters and the experimental
setup should follow closely their setup. [3, 4] follow for the most part the setup of [1, 2]. We
recommend you to read all these papers. We give pointers for the most relevant portions for
you to read in a future section.

Guidelines on implementation

This homework requires a significant implementation effort. It is hard to read through the
papers once and know immediately what you will need to be implement. We suggest you
to think about the different components (e.g., image preprocessor, replay buffer, Tensorflow
or Keras model definition, model updater, model runner, exploration schedule, learning rate
schedule, ...) that you will need to implement for each of the different methods that we
ask you about, and then read through the papers having these components in mind. By
this we mean that you should try to divide and implement small components with well-
defined functionalities rather than try to implement everything at once. Much of the code
and experimental setup is shared between the different methods so identifying well-defined
reusable components will save you trouble. We provide some code templates that you can
use if you wish. Contrary to the previous assignment, abiding to the function signatures
defined in these templates is not mandatory – you can write your code from scratch if you
wish.

This is a challenging assignment. Please start early!

Guidelines on references

We recommend you to read all the papers mentioned in the references. There is a significant
overlap between different papers, so in reality you should only need certain sections to
implement what we ask of you. We provide pointers for relevant sections for this assignment
for your convenience

The work in [1] contains the description of the experimental setup. Read paragraph 3 of
section 4 for a description of the replay memory; read Algorithm 1; read paragraphs 1 and 3
of section 4.1 for preprocessing and model architecture respectively; read section 5 for the
rest of the experimental setup (e.g., reward truncation, optimization algorithm, exploration
schedule, and other hyperparameters). The methods section in [2], may clarify a few details
so it may be worth to read selectively if questions remain after reading [1].

In [3], read ”Double Q-learning” for the definition of the double Q-learning target; read
paragraph 3 of ”Empirical results” for some brief comments on the experimental setup fol-
lowed. In [4], look at equation 11 and read around three paragraphs up and down for how
to set up the dueling architecture; read paragraph 2 of section 4.2 for comments on the

4

experimental setup and model architecture. It may be worth to skim additional sections of
all these papers.

Questions

1. [5pts] Show that update (1) and update (2) are the same when the functions in Q are
of the form Qw(s, a) = wTφ(s, a), with w ∈ R|S||A| and φ : S × A→ R|S||A|, where the
feature function φ is of the form φ(s, a)s′,a′ = 1[s′ = s, a′ = a], where 1 denotes the
indicator function which evaluates to 1 if the condition evaluates to true and evaluates
to 0 if the condition evaluates to false. Note that the coordinates in the vector space
R|S||A| can be seem as being indexed by pairs (s′, a′), where s′ ∈ S, a′ ∈ A.

2. [5pts] Implement a linear Q-network (no experience replay or target fixing). Use the
the experimental setup of [1, 2] to the extent possible.

3. [10pts] Implement a linear Q-network with experience replay and target fixing. Use
the experimental setup of [1, 2] to the extent possible.

4. [5pts] Implement a linear double Q-network. Use the the experimental setup of [1, 2]
to the extent possible.

5. [35pts] Implement the deep Q-network as described in [1, 2].

6. [20pts] Implement the double deep Q-network as described in [3].

7. [20pts] Implement the dueling deep Q-network as described in [4].

5pts out of the total of 100pts are reserved for overall report quality. We recommend you
to follow closely the experimental setup described in the papers. Even if you fully replicate
the experimental from the paper, we expect you to summarize it briefly in the report once.
After that you can simply describe differences from it and mention that you used the same
experimental setup otherwise if that was the case.

For each of the models, we want you to generate a performance plot across time. To do
this, you should periodically run (e.g., every 10000 or 100000 updates to the Q-network)
the policy induced by the current Q-network for 20 episodes and average the total reward
achieved. Note that in this case we are interested in total reward without discounting or
truncation. During evaluation, you can use the same ε-greedy probability that is currently
being considered in the exploration schedule or you can turn off exploration completely, i.e.,
rather than doing ε-greedy, just do greedy with respect to the current Q-network. Also
briefly comment on the training behavior and whether you find something unexpected in the
results obtained.

Additionally, for each of the models, we want you to generate a video capture of an
episode played by your trained Q-network at different points of the training process (0/3,
1/3, 2/3, and 3/3 through the training process) of either Enduro or Space Invaders. An
episode is defined as the interval between the moment you start the game until the moment
you lose all lives. You can use the Monitor wrapper to generate both the performance curves

5

(although only for ε-greedy in this case) and the video captures. Look at the OpenAI Gym
tutorial for more details on how to use it.

Finally, construct a table with the average total reward per episode in 100 episodes
achieved by your fully trained model. Also show the information about the standard devi-
ation, i.e., each entry should have the format mean ± std. There should be an entry per
model. Briefly comment on the results of this table.

You should submit your report, video captures, and code through Gradescope. Your code
should be reasonably well-commented in key places of your implementation.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

[3] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. 2016.

[4] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando
de Freitas. Dueling network architectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581, 2015.

6

