
10-703 Deep RL and Controls
OpenAI Gym Recitation

Devin Schwab

Spring 2017

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

What is OpenAI Gym?

I A standard Python API for RL environments

I A set of tools to measure agent performance

I An online scoreboard for comparing and benchmarking
approaches

I https://gym.openai.com/

https://gym.openai.com/

Domain Examples

(a) Toy Text (b) Atari (c) Controls

(d) MuJoCo (e) Doom (f) Minecraft

VirtualEnv Installation

I It is recommended that you install the gym and any
dependencies in a virtualenv

I The following steps will create a virtualenv with the gym
installed

virtualenv openai-gym-demo

source openai-gym-demo/bin/activate

pip install -U gym[all]

python -c 'import gym; gym.make("FrozenLake-v0")'

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

Basic RL Setup

Environment

Agent
action
Atstate St

reward Rt

OpenAI
Environment.step(At)

Agent
action
At

state St
reward Rt

terminal?

Basic RL Setup

Environment

Agent
action
Atstate St

reward Rt

OpenAI
Environment.step(At)

Agent
action
At

state St
reward Rt

terminal?

Basic Agent Loop

import gym

env = gym.make("Taxi-v2")

observation = env.reset()

for _ in range(1000):

env.render()

your agent here (this takes random actions)

action = env.action_space.sample()

observation, reward, done, info = env.step(action)

if done:

env.render()

break

Creating an Instance

I Each gym environment has a unique name of the form
([A-Za-z0-9]+-)v([0-9]+)

I To create an environment from the name use the

env = gym.make(env_name)

I For example, to create a Taxi environment:

env = gym.make('Taxi-v2')

Reset Function

I Used to reinitialize a new episode

I Returns the initial state

init_state = env.reset()

Step Function

step(action) -> (next_state,

reward,

is_terminal,

debug_info)

I Performs the specified action and returns the resulting state

I The main method your agent interacts with

Render

I Optional method

I Used to display the state of your environment

I Useful for debugging and qualitatively comparing different
agent policies

Basic Agent Demo

demos/basic agent.py

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

Datatypes

I Reward : float

I Terminal : bool

I Action : Depends on environment

I State : Depends on environment

Example State Representations

128

(a) Taxi-v2

[[[0 0 0]

[0 0 0]

[0 0 0]

...,

[0 0 0]

[0 0 0]

[0 0 0]]]

(b) Breakout-v0

Figure: State Representations

Example State Representations

(a) Taxi-v2 (b) Breakout-v0

Figure: State Representations

Example Action Representations

1

(a) Taxi-v2

[0, 40.5, 0., -180., .5, 99.2]

(b) Soccer-v0

Figure: State Representations

Example Action Representations

1

(a) Taxi-v2

[0, 40.5, 0., -180., .5, 99.2]

(b) Soccer-v0

Figure: State Representations

How do you tell what the state and action space is for an
environment?

Environment Space Attributes

I Most environments have two special attributes:
I action space
I observation space

I These contain instances of gym.spaces classes

I Makes it easy to find out what are valid states and actions

I There is a convenient sample method to generate uniform
random samples in the space.

gym.spaces

I Action spaces and State spaces are defined by instances of
classes of the gym.spaces modules

I Included types are:
I gym.spaces.Discrete
I gym.spaces.MultiDiscrete
I gym.spaces.Box
I gym.spaces.Tuple

I All instances have a sample method which will sample
random instances within the space

gym.spaces.Discrete

I The homework environments will use this type of space

I Specifies a space containing n discrete points

I Each point is mapped to an integer from [0, n − 1]
I Discrete(10)

I A space containing 10 items mapped to integers in [0, 9]
I sample will return integers such as 0, 3, and 9.

gym.spaces.MultiDiscrete

I You will use this to implement an environment in the
homework

I Species a space containing k dimensions each with a separate
number of discrete points.

I Each point in the space is represented by a vector of integers
of length k

I MultiDiscrete([(1, 3), (0, 5)])
I A space with k = 2 dimensions
I First dimension has 4 points mapped to integers in [1, 3]
I Second dimension has 6 points mapped to integers in [0, 5]
I sample will return a vector such as [2, 5] and [1, 3]

gym.spaces.Box

I Used for multidimensional continuous spaces with bounds

I You will see environments with these types of state and action
spaces in future homeworks

I Box(np.array((-1.0, -2.0)), np.array((1.0, 2.0)))
I A 2D continous state space
I First dimension has values in range [−1.0, 1.0)
I Second dimension has values in range [−2.0, 2.0)
I sample will return a vector such as [−.55, 2.] and [.768,−1.55]

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

gym.Env Class

I All environments should inherit from gym.Env

I At a minimum you must override a handful of methods:
I step
I reset

I At a minimum you must provide the following attributes
I action space
I observation space

Subclass Methods

I step is the same api as the step function used in the example

I reset is the same api as the reset function in the example
I You may also provide the following methods for additional

functionality:
I render
I close
I configure
I seed

Attributes

I observation space represents the state space

I action space represents the action space

I Both are instances of gym.spaces classes

I You can also provide a reward range, but this defaults to
(−∞,∞)

Registration

I How do you get your environment to work with gym.make()?

Registration

I How do you get your environment to work with gym.make()?
I You must register it!

Registration Example

from gym.envs.registration import register

register(

id='Deterministic-4x4-FrozenLake-v0',

entry_point='gym.envs.toy_text.frozen_lake:FrozenLakeEnv',

kwargs={'map_name': '4x4',

'is_slippery': False})

Registration Example

I id : the environment name used with gym.make

I entry point : module path and class name of environment

I kwargs: dictionary of keyword arguments to environment
constructor

Discrete Environment Class

I A subclass of the gym.Env which provides the following
attributes

I nS : number of states
I nA : number of actions
I P : model of environment
I isd : initial state distribution

Model

I P is a dictionary of dictionary of lists

P[s][a] == [(prob, next_state, reward, terminal), ...]

I isd is a list or array of length nS

isd == [0., 0., 1., 0.]

FrozenLake-v0 Example

demos/frozen lake demo.py

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

OpenAI Gym Scoreboard

I The gym also includes an online scoreboard
I Gym provides an API to automatically record:

I learning curves of cumulative reward vs episode number
I Videos of the agent executing its policy

I You can see other people’s solutions and compete for the best
scoreboard

Monitor Wrapper

import gym

from gym import wrappers

env = gym.make('CartPole-v0')

env = wrappers.Monitor(env, '/tmp/cartpole-experiment-1')

for i_episode in range(20):

observation = env.reset()

for t in range(100):

env.render()

print(observation)

action = env.action_space.sample()

observation, reward, done, info = env.step(action)

if done:

print("Episode finished after {} timesteps".format(t+1))

break

env.close()

gym.upload('/tmp/cartpole-experiment-1', api_key='blah')

Scoreboard Demo

demos/monitor demo.py

Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion

Summary

I OpenAI Gym provides a standardized API for RL environments

I Gym also provides an online scoreboard for sharing and
comparing results/techniques

I With only a few functions you can have your own gym
environment to use with your RL algorithms

Thank You

Questions

	Introduction
	Basic API
	Basic Datatypes
	Creating an Environment
	Monitoring and Scoring
	Conclusion

