10-703 Deep RL and Controls
OpenAl Gym Recitation

Devin Schwab

Spring 2017

Table of Contents

Introduction

What is OpenAl Gym?

v

v

A standard Python API for RL environments
A set of tools to measure agent performance

An online scoreboard for comparing and benchmarking
approaches

https://gym.openai.com/

https://gym.openai.com/

Domain Examples

(a) Toy Text (b) Atari (c) Controls

(f) Minecraft

VirtualEnv Installation

> It is recommended that you install the gym and any
dependencies in a virtualenv

» The following steps will create a virtualenv with the gym
installed

virtualenv openai-gym-demo

source openai-gym-demo/bin/activate

pip install -U gym[all]

python -c 'import gym; gym.make("FrozenLake-vO")'

Table of Contents

Basic API

Basic RL Setup

action
As

state S;
reward R;

Environment

Basic RL Setup

state S;
reward R;
terminal?

{E

OpenAl
nvironment.step(A;)

action
At

Basic Agent Loop

import gym
env = gym.make("Taxi-v2")
observation = env.reset()
for _ in range(1000):
env.render ()
your agent here (thts takes random actions)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
env.render ()
break

Creating an Instance

» Each gym environment has a unique name of the form
([A-Za-z0-9]+-)v([0-9]+)

> To create an environment from the name use the
env = gym.make (env_name)

» For example, to create a Taxi environment:

env = gym.make('Taxi-v2')

Reset Function

» Used to reinitialize a new episode
» Returns the initial state
init_state = env.reset()

Step Function

step(action) -> (next_state,
reward,
is_terminal,
debug_info)

» Performs the specified action and returns the resulting state

» The main method your agent interacts with

Render

» Optional method
» Used to display the state of your environment

» Useful for debugging and qualitatively comparing different
agent policies

Basic Agent Demo

demos/basic_agent.py

Table of Contents

Basic Datatypes

Datatypes

Reward : float

v

Terminal : bool

v

v

Action : Depends on environment

v

State : Depends on environment

Example State Representations

CLLo
[0
(o

0]
0]
0]

o O O

[0 0 O]

[0 0 0]
128 [0 0 0]]1]

(a) Taxi-v2 (b) Breakout-v0

Figure: State Representations

Example State Representations

(a) Taxi-v2 (b) Breakout-v0

Figure: State Representations

Example Action Representations

1 [0, 40.5, 0., -180., .5, 99.2]
(a) Taxi-v2 (b) Soccer-v0

Figure: State Representations

Example Action Representations

1 [0, 40.5, 0., -180., .5, 99.2]
(a) Taxi-v2 (b) Soccer-v0

Figure: State Representations

How do you tell what the state and action space is for an
environment?

Environment Space Attributes

» Most environments have two special attributes:

» action_space
» observation_space

v

These contain instances of gym.spaces classes

v

Makes it easy to find out what are valid states and actions

v

There is a convenient sample method to generate uniform
random samples in the space.

gym.spaces

» Action spaces and State spaces are defined by instances of
classes of the gym.spaces modules
> Included types are:
» gym.spaces.Discrete
gym.spaces.MultiDiscrete
gym.spaces.Box
» gym.spaces.Tuple

v

v

> All instances have a sample method which will sample
random instances within the space

gym.spaces.Discrete

» The homework environments will use this type of space
» Specifies a space containing n discrete points

» Each point is mapped to an integer from [0, n — 1]

» Discrete(10)

» A space containing 10 items mapped to integers in [0, 9]
» sample will return integers such as 0, 3, and 9.

gym.spaces.MultiDiscrete

> You will use this to implement an environment in the
homework

> Species a space containing k dimensions each with a separate
number of discrete points.

» Each point in the space is represented by a vector of integers
of length k
» MultiDiscrete([(1, 3), (0, 5)1)
» A space with k = 2 dimensions
First dimension has 4 points mapped to integers in [1, 3]
Second dimension has 6 points mapped to integers in [0, 5]
sample will return a vector such as [2,5] and [1, 3]

v Vvyy

gym.spaces.Box

» Used for multidimensional continuous spaces with bounds

» You will see environments with these types of state and action
spaces in future homeworks

» Box(np.array((-1.0, -2.0)), np.array((1.0, 2.0)))
» A 2D continous state space

First dimension has values in range [—1.0,1.0)

Second dimension has values in range [—2.0,2.0)

sample will return a vector such as [—.55,2.] and [.768, —1.55]

v vy

Table of Contents

Creating an Environment

gym.Env Class

> All environments should inherit from gym.Env
» At a minimum you must override a handful of methods:

> _step
> _reset

» At a minimum you must provide the following attributes

» action_space
» observation_space

Subclass Methods

> _step is the same api as the step function used in the example

» _reset is the same api as the reset function in the example

» You may also provide the following methods for additional
functionality:
» _render
» _close
» _configure
» _seed

Attributes

> observation_space represents the state space

> action_space represents the action space

v

Both are instances of gym.spaces classes

v

You can also provide a reward_range, but this defaults to
(_007 OO)

Registration

» How do you get your environment to work with gym.make()?

Registration

» How do you get your environment to work with gym.make ()?
» You must register it!

Registration Example

from gym.envs.registration import register
register(
id='Deterministic-4x4-FrozenLake-v0',
entry_point='gym.envs.toy_text.frozen_lake:FrozenLakeEnv',
kwargs={'map_name': '4x4',
'is_slippery': Falsel})

Registration Example

> id : the environment name used with gym.make
> entry_point : module path and class name of environment
» kwargs: dictionary of keyword arguments to environment

constructor

Discrete Environment Class

> A subclass of the gym.Env which provides the following
attributes
» nS : number of states
nA : number of actions
P : model of environment
isd : initial state distribution

vV vy

Model

» P is a dictionary of dictionary of lists

Pls][a] == [(prob, next_state, reward, terminal),
» isd is a list or array of length nS

isd == [0., 0., 1., 0.]

FrozenLake-vO Example

demos/frozen_lake_demo.py

Table of Contents

Monitoring and Scoring

OpenAl Gym Scoreboard

» The gym also includes an online scoreboard
» Gym provides an API to automatically record:
> learning curves of cumulative reward vs episode number
» Videos of the agent executing its policy
» You can see other people’s solutions and compete for the best
scoreboard

Monitor Wrapper

import gym

from gym import wrappers

env = gym.make('CartPole-v0')
env

wrappers.Monitor(env, '/tmp/cartpole-experiment-1')
for i_episode in range(20):
observation = env.reset()
for t in range(100):
env.render ()
print (observation)
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
env.close()
gym.upload('/tmp/cartpole-experiment-1', api_key='blah')

Scoreboard Demo

demos/monitor_demo.py

Table of Contents

Conclusion

Summary

» OpenAl Gym provides a standardized API for RL environments

» Gym also provides an online scoreboard for sharing and
comparing results/techniques

» With only a few functions you can have your own gym
environment to use with your RL algorithms

Thank You

Questions

	Introduction
	Basic API
	Basic Datatypes
	Creating an Environment
	Monitoring and Scoring
	Conclusion

