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What is OpenAI Gym?

I A standard Python API for RL environments

I A set of tools to measure agent performance

I An online scoreboard for comparing and benchmarking
approaches

I https://gym.openai.com/

https://gym.openai.com/


Domain Examples

(a) Toy Text (b) Atari (c) Controls

(d) MuJoCo (e) Doom (f) Minecraft



VirtualEnv Installation

I It is recommended that you install the gym and any
dependencies in a virtualenv

I The following steps will create a virtualenv with the gym
installed

virtualenv openai-gym-demo

source openai-gym-demo/bin/activate

pip install -U gym[all]

python -c 'import gym; gym.make("FrozenLake-v0")'
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Basic Agent Loop

import gym

env = gym.make("Taxi-v2")

observation = env.reset()

for _ in range(1000):

env.render()

# your agent here (this takes random actions)

action = env.action_space.sample()

observation, reward, done, info = env.step(action)

if done:

env.render()

break



Creating an Instance

I Each gym environment has a unique name of the form
([A-Za-z0-9]+-)v([0-9]+)

I To create an environment from the name use the

env = gym.make(env_name)

I For example, to create a Taxi environment:

env = gym.make('Taxi-v2')



Reset Function

I Used to reinitialize a new episode

I Returns the initial state

init_state = env.reset()



Step Function

step(action) -> (next_state,

reward,

is_terminal,

debug_info)

I Performs the specified action and returns the resulting state

I The main method your agent interacts with



Render

I Optional method

I Used to display the state of your environment

I Useful for debugging and qualitatively comparing different
agent policies



Basic Agent Demo

demos/basic agent.py
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Datatypes

I Reward : float

I Terminal : bool

I Action : Depends on environment

I State : Depends on environment



Example State Representations

128

(a) Taxi-v2

[[[0 0 0]

[0 0 0]

[0 0 0]

...,

[0 0 0]

[0 0 0]

[0 0 0]]]

(b) Breakout-v0

Figure: State Representations



Example State Representations

(a) Taxi-v2 (b) Breakout-v0

Figure: State Representations



Example Action Representations

1

(a) Taxi-v2

[0, 40.5, 0., -180., .5, 99.2]

(b) Soccer-v0

Figure: State Representations



Example Action Representations

1

(a) Taxi-v2

[0, 40.5, 0., -180., .5, 99.2]

(b) Soccer-v0

Figure: State Representations

How do you tell what the state and action space is for an
environment?



Environment Space Attributes

I Most environments have two special attributes:
I action space
I observation space

I These contain instances of gym.spaces classes

I Makes it easy to find out what are valid states and actions

I There is a convenient sample method to generate uniform
random samples in the space.



gym.spaces

I Action spaces and State spaces are defined by instances of
classes of the gym.spaces modules

I Included types are:
I gym.spaces.Discrete
I gym.spaces.MultiDiscrete
I gym.spaces.Box
I gym.spaces.Tuple

I All instances have a sample method which will sample
random instances within the space



gym.spaces.Discrete

I The homework environments will use this type of space

I Specifies a space containing n discrete points

I Each point is mapped to an integer from [0, n − 1]
I Discrete(10)

I A space containing 10 items mapped to integers in [0, 9]
I sample will return integers such as 0, 3, and 9.



gym.spaces.MultiDiscrete

I You will use this to implement an environment in the
homework

I Species a space containing k dimensions each with a separate
number of discrete points.

I Each point in the space is represented by a vector of integers
of length k

I MultiDiscrete([(1, 3), (0, 5)])
I A space with k = 2 dimensions
I First dimension has 4 points mapped to integers in [1, 3]
I Second dimension has 6 points mapped to integers in [0, 5]
I sample will return a vector such as [2, 5] and [1, 3]



gym.spaces.Box

I Used for multidimensional continuous spaces with bounds

I You will see environments with these types of state and action
spaces in future homeworks

I Box(np.array((-1.0, -2.0)), np.array((1.0, 2.0)))
I A 2D continous state space
I First dimension has values in range [−1.0, 1.0)
I Second dimension has values in range [−2.0, 2.0)
I sample will return a vector such as [−.55, 2.] and [.768,−1.55]
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gym.Env Class

I All environments should inherit from gym.Env

I At a minimum you must override a handful of methods:
I step
I reset

I At a minimum you must provide the following attributes
I action space
I observation space



Subclass Methods

I step is the same api as the step function used in the example

I reset is the same api as the reset function in the example
I You may also provide the following methods for additional

functionality:
I render
I close
I configure
I seed



Attributes

I observation space represents the state space

I action space represents the action space

I Both are instances of gym.spaces classes

I You can also provide a reward range, but this defaults to
(−∞,∞)



Registration

I How do you get your environment to work with gym.make()?



Registration

I How do you get your environment to work with gym.make()?
I You must register it!



Registration Example

from gym.envs.registration import register

register(

id='Deterministic-4x4-FrozenLake-v0',

entry_point='gym.envs.toy_text.frozen_lake:FrozenLakeEnv',

kwargs={'map_name': '4x4',

'is_slippery': False})



Registration Example

I id : the environment name used with gym.make

I entry point : module path and class name of environment

I kwargs: dictionary of keyword arguments to environment
constructor



Discrete Environment Class

I A subclass of the gym.Env which provides the following
attributes

I nS : number of states
I nA : number of actions
I P : model of environment
I isd : initial state distribution



Model

I P is a dictionary of dictionary of lists

P[s][a] == [(prob, next_state, reward, terminal), ...]

I isd is a list or array of length nS

isd == [0., 0., 1., 0.]



FrozenLake-v0 Example

demos/frozen lake demo.py



Table of Contents

Introduction

Basic API

Basic Datatypes

Creating an Environment

Monitoring and Scoring

Conclusion



OpenAI Gym Scoreboard

I The gym also includes an online scoreboard
I Gym provides an API to automatically record:

I learning curves of cumulative reward vs episode number
I Videos of the agent executing its policy

I You can see other people’s solutions and compete for the best
scoreboard



Monitor Wrapper

import gym

from gym import wrappers

env = gym.make('CartPole-v0')

env = wrappers.Monitor(env, '/tmp/cartpole-experiment-1')

for i_episode in range(20):

observation = env.reset()

for t in range(100):

env.render()

print(observation)

action = env.action_space.sample()

observation, reward, done, info = env.step(action)

if done:

print("Episode finished after {} timesteps".format(t+1))

break

env.close()

gym.upload('/tmp/cartpole-experiment-1', api_key='blah')



Scoreboard Demo

demos/monitor demo.py
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Summary

I OpenAI Gym provides a standardized API for RL environments

I Gym also provides an online scoreboard for sharing and
comparing results/techniques

I With only a few functions you can have your own gym
environment to use with your RL algorithms



Thank You

Questions
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