Deep Network Guided Proof Search

By Sarah Loos, Geoffrey Irving, Christian Szegedy,
and Cezary Kaliszyk

Presentation by Rishub Jain

Related Work

e Many other non-deep algorithms for proof search
o Little use of machine learning
m Tried to do premise selection and relevance
o Each problem is very large
o Algorithm used: E-prover
e Many advances in deep neural networks
o Similar to problems in question and answering and knowledge base completion

e This work combines the two

Challenges

e Deep Learning is slower

o Thousands of superposition steps may be performed by the prover for
every clause that is evaluated by the Deep Network.

o Thus, need to provide high quality suggestions

o Can use the DNN to initially guide clause selection, and finish off with a
previous prover algorithm

e Need to interleave hard-coded heuristics

Dataset - Mizar First-Order Problems

e Mizar Mathematical Library (MML) dataset

e 57,882 Mizar Theorems

o 32,521 with proofs by ATP methods computed by Mizar system (“easy statements”)
o 25,361 conjectures unsolved by the system, but solved by humans (“hard statements”)

e 91,877 proofs for the solved theorems

e Separated by conjecture to avoid contamination
o 29,325 conjectures with 82,718 proofs in training set
o 3,196 conjectures with 9,159 proofs in test set

e Type of preprocessing (that does clausification and converts to CNF) has a

big effect on proof representation
o Consistently used Auto208 configuration for proof generation

The First-Order Logic Prover E

e Preprocesses inputs (the conjecture and possible clauses) into CNF

e l[teratively finds the correct clauses of the proof
o Maintains a set of unprocessed (with initial guesses) and processed (initially empty) clauses
o Selects a “good” clause from unprocessed set and adds it to the processed set
m Previously most successful method (hybrid heuristics):
e Evaluating each clause on many heuristics (FIFO, shortest clause)
e Processes top clause from each ranking, with arbitrary interleaving
m This paper’s method:
e Use Deep Learning to select clause
o Adds the selected clause’s consequences to unprocessed set
o Repeat until proof is found

Method

e Given a clause and a conjecture, evaluate clause

o Should also depend on already processed clauses, but
not included for simplicity and speed

e Embed clause and negated conjecture
o CNN

Logistic loss

I

Fully Connected

(1 node)

I

Fully Connected
(1824 nodes)

I

Concatenate

J/A\\

o WaveNet (dilated convolutions)

Clause Embedder

Negated conjecture
embedder

o RNN (Tree-LSTM and MLP)

T

i

e Concatenate embeddings I

Clause tokens

e Use 1-layer MLP with 1024 hidden units to
predict probability that clause is part of the proof

MNegated conjecture
tokens

CNN Embedding

Max Pooling

f

e Simple and shallow because “they give good Siaile ‘19124’ i
results on that related task” Conv 5 (1624) + RelU

e Avoid character-level embedding because of !
Conv 5 (1024) + RelU

large clauses ;

Input token embeddings

Word-level CNN

e Actual token embeddings of symbols (constants, O
function names, variable names, logical IJ'H
operations, and parentheses) unclear, but likely activation: o

learns word-embeddings from DeepMath: Slobal temporal HaxPooling

1024-dimensional
sequence embedding

WaveNet Embedding

e CNN with dilated convolutions and residual connections

e 3 blocks of 7 layers dllated. by d=1,2,4,...,64 fors(2) = (Bo Bo B)(Dy(.p))

e Uses same token embedding as CNN B(z) =+ (Lga o+~ o Ly o Ly)(Dy(z,p))
Lq(z) = z + tanh(Cy(z))o(Cy(z))

5
Calz)i =b+ Y wiTi_agj—[o/21)
: lxllle Softmax ’—»omput j=1

O O O O O O O O O O O O O O %~ Output

Dilation = 8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 1

Input

RNN Embedding - Tree Construction

e Create a parse tree for logic formula
e Leaves are learned variable name embeddings
e Each internal node is one of 4 functions:

e apply nodes that apply a function with exactly two children.
e or nodes that compute the embedding for the disjunction of exactly two children.

e and nodes that compute the embedding for the conjunction of exactly two children. This
is used only for embedding the negated conjecture, since the proof clauses do not contain
conjunctions.

e not nodes that compute the embedding for the negation of a single child node.

e “not” function seems to be absent from clause embedding calculation

RNN Embedding - Network

e Represent each type of layer as

a Tree-LSTM block or 1'|ayer Tree-LSTM (7; etal, 2015)
MLP
o Likely all layers are Tree-LSTM o SR
blocks except the “not” gate
e Each type of layer shares e
weights, but different for clause """
and conjecture embeddings et thetrsisi

to ignore information from subtrees.

o 7 total sets of weight matrices

“’\-‘

v

Accuracies of Clause-in-Proof Classification

Model | Embedding Size | Accuracy on 50-50% split
Tree-RNN-256x%2 256 77.5%
Tree-RNN-512x1 256 78.1%

Tree-LSTM-256x2 256 77.0%
Tree-LSTM-256x3 256 77.0%
Tree-LSTM-512x2 256 77.9%
CNN-1024x3 256 80.3%
*CNN-1024x3 256 78.7%
CNN-1024x3 512 79.7%
CNN-1024x3 1024 79.8%
WaveNet-256 x3xT 256 79.9%
*WaveNet-256 x3x 7 256 79.9%
WaveNet-1024x3x 7 1024 81.0%
WaveNet-640x3x7(20%) 640 81.5%
*WaveNet-640x3x 7(20%) 640 79.9%

Table 1: The accuracy of predicting whether a processed clause was ultimately required for the
proof. The accuracy is measured on a 50-50% split of positive and negative processed clause
examples, with various recursive deep neural network models. Models with an asterisk (*) were
trained on a data set which additionally included a sampling of unprocessed clauses as negative
examples. In order to facilitate a direct comparison with other models, the same evaluation
dataset was used, but this is slightly biased against the examples denoted with (*).

Proof Generation Evaluation on Easy Statements

e Tried 4 approaches (only using Wavenet and regular CNNs):

e Baseline Auto heuristic
o Not as accurate

e Pure CNN

o Takes alongtime

e Hybrid CNN, adds the CNN as another heuristic among the other Auto
herustics
o Slightly more accurate, but still takes a long time

e Two-phase switched approach, starts with CNN (tried pure and hybrid),

and shifts to baseline Auto when time is running out
o Able to be as accurate, since it doesn’t take as long
o Is the best model (using the hybrid CNN)

Proof Generation Evaluation on Easy Statements

100%

e Evaluated approach using
simple CNN, then 80%

evaluated different € o
models using that §
approach ; o
e Two-phase hybrid CNN 20%
was the best, because o

— Pure CNN
Hybrid CNN

Pure CNN; Auto
Hyrbid CNN; Auto

hybrid CNN could not
close proof because it

10

10° 10
Processed clause limit

10°

100

— Auto

WaveNet 640*
WaveNet 256
WaveNet 256*
60% WaveNet 640
CNN

CNN*

80%)

40%

Percent unproved

20%)

09 =
10 10° 10% 10°
Processed clause limit

Figure 4: The percentage of unsuccessful proofs at various processed clause limits using differ-

was too slow ent selection heuristics. In the left figure, we use the same network (CNN-1024x3, with 256
e Confu sing choice of embedding) throughout, but show the effect of various interactions with the Auto heuristic. On
C 1= the right we use hybrid, two-phase guidance, but show the effect of different neural networks.

X-axis: time != # More detailed values are shown in Table 2.

processed clauses

Proof Generation

e Used two-phased
approach that runs the
hybrid network for 20 min
then baseline Auto for 10
min

e Regular CNN worked
better for larger
processed clauses,
possibly because
WaveNet took too long

Evaluation on Easy Statements

Model | Accuracy | PC<1,000 | PC<10,000 | PC<100,000 | PC<ox

Auto N/A 89.0% 94.3% 96.2% 96.6%
*WaveNet 640 79.9% 91.4% 95.0% 96.5% 96.6%
WaveNet 256 79.9% 92.3% 95.5% 96.8% 96.8%
*WaveNet 256 79.9% 92.2% 95.7% 96.8% 96.8%
CNN 80.3% 93.3% 96.4% 97.0% 97.1%
WaveNet 640 81.5% 92.2% 95.7% 97.0% 97.2%
*CNN 78.7% 93.0% 96.4% 97.2% 97.3%

Table 2: The percent of theorems proved in the “easy statements’ with various model archi-
tectures. The training accuracy is duplicated from Table 1 for convenience. The values in the
PC<N columns indicate the percent of statements proved requiring fewer than N processed
clauses (PC). The far right column (PC<o0) is the percent of statements proved within 30
minutes, with a memory limit of 16G, and no limit on processed clauses.

Proof Generation Evaluation on Hard Statements

e Seemed to use CPUs for DNN forward pass
e Proof generation bottleneck becomes DNN computation
e Table shows it is necessary to have premise selection and two-phase

approach
| ‘ without premise selection | with premise selection |
unguided 145 458
guided (hybrid) 137 383

Table 3: Number of hard theorems proved with various combinations of premise selection and
(unswitched) proof guidance. Note that even when our proof guidance is partial, it still produces
worse results than the variant without deep network guidance. This is due to the slowness of
deep network evaluation. The sole purpose of this table is to highlight the importance of
premise selection for the hard statements. In other experiments, we concentrate on the two-
phase “switched” approach that combines guided and unguided search in a sequential fashion
and outperforms both unguided search and hybrid guidance without the switch.

Proof Generation Evaluation on Hard Statements

Used character level (for simplicity) CNN premise selection from DeepMath paper
Different premise selection models have similar performance, but solve different proofs
Simple CNN worked the best

Total of 1,866 (7.36%) hard statements proven

| Model | DeepMath 1 | DeepMath 2 | Union of 1 and 2 |

Auto 578 581 674
*WaveNet 640 644 612 767
*WaveNet 256 692 712 864
WaveNet 640 629 685 997
*CNN 905 812 1,057
CNN 839 935 1,101

| Total (unique) | 1,451 | 1,458 | 172 |

Table 4: Number of theorems proved out of the 25,361 hard theorems, proved with various
combinations of premise selection (DeepMath 1 & 2) and clause selection guidance. The last
column shows the union of theorems proved with either premise selection step method in the
given row. The size of the union of the all theorems proved by methods in this in this table is
1,712 (6.8%). The number of theorems proved by the deep network guided methods is 1,665
(6.6%).

Conclusions

e Can use DNNs to guide proof search algorithms to significantly perform
better

e Speed and accuracy are important to increase proving power
o WaveNet was worse than the CNN

e Two-phase approach is necessary
e Paper uses 30 min instead of the standard 15 min to solve proofs, but
extra time only helps if using DNN guidance

e Interesting intersection of domains
o WaveNet built for generating audio
o Tree-LSTMs used for semantic tree parsing
m Used multiple “layers” as opposed to just 1

