
Deep Network Guided Proof Search

By Sarah Loos, Geoffrey Irving, Christian Szegedy, 
and Cezary Kaliszyk

Presentation by Rishub Jain



Related Work
● Many other non-deep algorithms for proof search

○ Little use of machine learning
■ Tried to do premise selection and relevance

○ Each problem is very large
○ Algorithm used: E-prover

● Many advances in deep neural networks
○ Similar to problems in question and answering and knowledge base completion

● This work combines the two



Challenges

● Deep Learning is slower
○ Thousands of superposition steps may be performed by the prover for 

every clause that is evaluated by the Deep Network.
○ Thus, need to provide high quality suggestions
○ Can use the DNN to initially guide clause selection, and finish off with a 

previous prover algorithm

● Need to interleave hard-coded heuristics



● Mizar Mathematical Library (MML) dataset
● 57,882 Mizar Theorems

○ 32,521 with proofs by ATP methods computed by Mizar system (“easy statements”)
○ 25,361 conjectures unsolved by the system, but solved by humans (“hard statements”)

● 91,877 proofs for the solved theorems
● Separated by conjecture to avoid contamination

○ 29,325 conjectures with 82,718 proofs in training set
○ 3,196 conjectures with 9,159 proofs in test set

● Type of preprocessing (that does clausification and converts to CNF) has a 
big effect on proof representation

○ Consistently used Auto208 configuration for proof generation

Dataset - Mizar First-Order Problems



● Preprocesses inputs (the conjecture and possible clauses) into CNF
● Iteratively finds the correct clauses of the proof

○ Maintains a set of unprocessed (with initial guesses) and processed (initially empty) clauses
○ Selects a “good” clause from unprocessed set and adds it to the processed set

■ Previously most successful method (hybrid heuristics):
● Evaluating each clause on many heuristics (FIFO, shortest clause)
● Processes top clause from each ranking, with arbitrary interleaving

■ This paper’s method:
● Use Deep Learning to select clause

○ Adds the selected clause’s consequences to unprocessed set
○ Repeat until proof is found

The First-Order Logic Prover E



Method
● Given a clause and a conjecture, evaluate clause

○ Should also depend on already processed clauses, but 
not included for simplicity and speed

● Embed clause and negated conjecture 
○ CNN
○ WaveNet (dilated convolutions)
○ RNN (Tree-LSTM and MLP)

● Concatenate embeddings
● Use 1-layer MLP with 1024 hidden units to 

predict probability that clause is part of the proof



CNN Embedding
● Simple and shallow because “they give good 

results on that related task”
● Avoid character-level embedding because of 

large clauses

● Actual token embeddings of symbols (constants, 
function names, variable names, logical 
operations, and parentheses) unclear, but likely 
learns word-embeddings from DeepMath:



WaveNet Embedding
● CNN with dilated convolutions and residual connections
● 3 blocks of 7 layers dilated by d=1,2,4,...,64
● Uses same token embedding as CNN



RNN Embedding - Tree Construction
● Create a parse tree for logic formula
● Leaves are learned variable name embeddings
● Each internal node is one of 4 functions:

● “not” function seems to be absent from clause embedding calculation



RNN Embedding - Network
● Represent each type of layer as 

a Tree-LSTM block or 1-layer 
MLP

○ Likely all layers are Tree-LSTM 
blocks except the “not” gate

● Each type of layer shares 
weights, but different for clause 
and conjecture embeddings

○ 7 total sets of weight matrices



Accuracies of Clause-in-Proof Classification



Proof Generation Evaluation on Easy Statements
● Tried 4 approaches (only using Wavenet and regular CNNs):
● Baseline Auto heuristic 

○ Not as accurate

● Pure CNN 
○ Takes a long time

● Hybrid CNN, adds the CNN as another heuristic among the other Auto 
herustics

○ Slightly more accurate, but still takes a long time

● Two-phase switched approach, starts with CNN (tried pure and hybrid), 
and shifts to baseline Auto when time is running out

○ Able to be as accurate, since it doesn’t take as long
○ Is the best model (using the hybrid CNN)



Proof Generation Evaluation on Easy Statements

● Evaluated approach using 
simple CNN, then 
evaluated different 
models using that 
approach

● Two-phase hybrid CNN 
was the best, because 
hybrid CNN could not 
close proof because it 
was too slow

● Confusing choice of 
X-axis: time != # 
processed clauses



Proof Generation Evaluation on Easy Statements

● Used two-phased 
approach that runs the 
hybrid network for 20 min 
then baseline Auto for 10 
min

● Regular CNN worked 
better for larger 
processed clauses, 
possibly because 
WaveNet took too long



Proof Generation Evaluation on Hard Statements

● Seemed to use CPUs for DNN forward pass
● Proof generation bottleneck becomes DNN computation
● Table shows it is necessary to have premise selection and two-phase 

approach



● Used character level (for simplicity) CNN premise selection from DeepMath paper
● Different premise selection models have similar performance, but solve different proofs
● Simple CNN worked the best
● Total of 1,866 (7.36%) hard statements proven

Proof Generation Evaluation on Hard Statements



Conclusions

● Can use DNNs to guide proof search algorithms to significantly perform 
better

● Speed and accuracy are important to increase proving power
○ WaveNet was worse than the CNN

● Two-phase approach is necessary
● Paper uses 30 min instead of the standard 15 min to solve proofs, but 

extra time only helps if using DNN guidance
● Interesting intersection of domains

○ WaveNet built for generating audio
○ Tree-LSTMs used for semantic tree parsing

■ Used multiple “layers” as opposed to just 1


