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High level idea

• Feature learning over graph-structured inputs. 

• Extending Graph Neural Networks to sequential outputs.



Overview:

• Introduction

• Formulation:
• Review of Graph Neural Networks

• Introducing Gated Graph Neural Networks

• Gated Graph Sequence Neural Networks

• Grounding the framework in experiments: bAbI

• Take-aways



Motivation

• Graphs! Graphs everywhere! 



Motivation - 1

• Graph structure data is widely prevalent.

• Earlier work uses engineered graph features; pre-learnt embeddings of 
these graphs. 

• More recent work learns features over graphs – Graph Neural Networks. 

However, 

• Existing work deals with global graph outputs / independent node-wise 
predictions.

• No work on graph based feature learning for sequential outputs. 



Motivation - 2

• Two concerns with feature learning over graphs with sequential 
outputs. 

1. Learning a representation of the input graph.

2. Learning representations of internal state during output prediction. 

• Desire sequential outputs; not just independent node 
classifications. 

• Hence require features that encode the partial output sequence 
so far, and the remaining sequence that needs to be produced. 



Contribution

1. Extending Graph Neural Networks to sequential outputs.

2. Achieved by invoking GRUs instead of purely feed-
forward components*.

* - Tweaks to the framework to go with this modification.



Review of GNNs - 1

• Consider a (directed) graph G = (V,E), 
• Nodes v in V, 

• Edges e in E,

• Node embeddings hv (d-dimensional vector),

• Node labels lv – Area / perimeter / color intensity of region of an image.

• Edge labels le – Relative positions of nodes, distances, angle between edges, etc. 

• IN(v): Nodes with incoming edges to v,

• OUT(v): Nodes with outgoing edges from v,

• NBR(v): Neighbours of v in the graph,

• CO(v): Set of all edges to / from v.



Review of GNNs - 2

• 2 steps to predict an output over a graph:
• Propagation phase: Compute node representations (node 

embeddings) for each node.

• Output model: Map each node representation to an output: 

ov = g(hv,lv) , where this mapping g is learnt. 



Review of GNNs – 3

• Propagation Model*:
• Iteratively propagate node representations till convergence: 

• Relies on f* being a contraction mapping to converge to a fixed point. 

• f* is decomposed as:



Review of GNNs - 4

• Propagation Model:

• Each f here is simply a linear transformation or a feed-forward neural 
net: 



Review of GNNs - 5

• Output Model:
• Node level outputs ov computed as: ov = g(hv,lv).

• g is a differentiable function mapping node embedding and labels to an 
output. 

• g is either linear transformation or a feed-forward network. 

• May also handle graph-level outputs (stacking all node-embeddings). 



Review of GNNs – 6 

• Learning*: Almeida-Pineda Algorithm:
• Running propagation to convergence.

• Computing gradients based on converged solution.

• Avoids storing intermediate states for gradient computation, but 
requires a contraction map f* / f.

• Implementation: 

• Penalty on L1-norm on Jacobian of parameters. 



Introducing Gated Graph NN

• Gated Graph NNs (GG-NNs) described for non-sequential 
output.

• Uses GG-NNs to construct Gated Graph Sequence NNs (GGS-
NNs). 

• Core Idea: 
• Replaces propagation model with GRU.

• Unrolls recurrence for T time-steps (instead of till convergence).

• Uses Backprop-through-time to compute gradients.



Gated Graph NNs - 1

Node Annotations:

• The contraction map in GNNs converges to a fixed point 
irrespective of initialization. 

• In GG-NNs, can initialize node embeddings with additional 
inputs – node annotations x

• x denotes if a node is special.

• In the reachability problem:
• xs = [1,0]T, xg = [0,1]T

• Concatenate zeros to x for initial node embeddings.



Gated Graph NNs - 2

Propagation Model:

• Computing av
(t) is the heart of the propagation.



Gated Graph NNs - 3

Output Model:

• One step outputs:
• Node selection: ov = g(hv

(T),xv)

• Softmax over node scores ov.

• Global outputs:
• “Graph-level representation vector”:

• i and j are feed-forward networks.



Gated Graph Sequence NNs

• GGS-NN: Several GG-NNs operate in sequence to produce 
outputs o(1), o(2), … o(K). 

• X(k) = [x1
(k); x2

(k);…x|v|
(k)] is matrix of node annotations. 

• May be initialized with 1-0 values, but in general are real 
valued. 

• 2 GG-NNs: 
• Fo – to predict o(k) from X(k).

• Fx – to predict X(k+1) from X(k)



Gated Graph Sequence NNs – 2

• H(k,t) = [h1
(k,t),h2

(k,t),…h|V|
(k,t)] are node representations.

• H(k,1) set by concatenating 0 to X(k).

• Fo and Fx can have shared propagation models with separate 
outputs, or have separate propagation models. 



Gated Graph Sequence NNs – 3 

• Node annotation output:
• To predict X(k+1) from H(k,T),

• Where j again is a feed-forward model. 



Gated Graph Sequence NNs – 3 

Two training settings: 

• Providing only final supervised node annotation. 

• Providing intermediate node annotations as supervision –
• Decouples the sequential learning process (BPTT) into independent 

time steps. 

• Condition the further predictions on the previous predictions.



bAbI

• 20 tasks to test forms of reasoning like counting / path-finding 
/ deduction.

• Requires symbolic form to get “stories” – Sequences of relations 
between entities, then convert them to a graph.

• Each entity is a node, each relation is an edge.

• The full story is a graph. 

• Questions are denoted as “eval”. 



Grounding notation in bAbI



bAbI – 1

• Feed in the story as input.

• Evaluates different questions separately. 



bAbI – 2 

• Node annotations – n<ID>.

• Question types – q<ID>.

• Edge annotations – e<ID>.

• Trained without strong supervision or intermediate annotations. 

• Heavily dependent on the symbolic form of these stories. 



bAbI – 3 

Shortest path problem: First defines the graph, then specifies 
query. 



bAbI – 4 

• Competing representation provided to RNN / LSTM baselines:



bAbI – tasks.



bAbI – tasks.



bAbI – 5 

• Results on bAbI Tasks: Subject-Object relations, Deduction, 
Induction, and reasoning about size. 



bAbI – 6 

• Results on the path-finding task (argued to be the hardest). 

• Shortest path problem – finding the sequence of nodes from A 
to B (unique solution).



Take-aways 

• Extend GNNs to sequential outputs.

• On simple tasks, with symbolic inputs, achieves perfect 
accuracy with limited training input.

• Caveats:
• Very small networks (order of 250 parameters), relatively simple tasks. 

• Restrictions on handling more general inputs, without symbolic 
representations. 


