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High level idea

* Feature learning over graph-structured inputs.

* Extending Graph Neural Networks to sequential outputs.



Overview:

e Introduction

* Formulation:
* Review of Graph Neural Networks
* Introducing Gated Graph Neural Networks
* Gated Graph Sequence Neural Networks

* Grounding the framework in experiments: bAbl

* Take-aways



Motivation

* Graphs! Graphs everywhere!
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“"Wow, I've never seen it bounce like that.”



Motivation - 1

* Graph structure data is widely prevalent.

e Barlier work uses engineered graph features; pre-learnt embeddings of
these graphs.

* More recent work learns features over graphs — Graph Neural Networks.

However,

 Existing work deals with global graph outputs / independent node-wise
predictions.

* No work on graph based feature learning for sequential outputs.



Motivation - 2

* T'wo concerns with feature learning over graphs with sequential
outputs.
1. Learning a representation of the input graph.
2. Learning representations of internal state during output prediction.

* Desire sequential outputs; not just independent node
classifications.

 Hence require features that encode the partial output sequence
so far, and the remaining sequence that needs to be produced.



Contribution

1. Extending Graph Neural Networks to sequential outputs.

2. Achieved by invoking GRUSs instead of purely feed-
forward components®.

* _ Tweaks to the framework to go with this modification.



Review of GNNs - 1

* Consider a (directed) graph G = (V,E),
* Nodes v in V,
* Edges e in E,
* Node embeddings h_ (d-dimensional vector),
* Node labels I, — Area / perimeter / color intensity of region of an image.
* Edge labels le — Relative positions of nodes, distances, angle between edges, etc.
* IN(v): Nodes with incoming edges to v,
* OUT(v): Nodes with outgoing edges from v,
 NBR(v): Neighbours of v in the graph,
* CO(v): Set of all edges to / from v.



Review of GNNs - 2

* 2 steps to predict an output over a graph:

* Propagation phase: Compute node representations (node
embeddings) for each node.

* Output model: Map each node representation to an output:
o, = g(h,l ) , where this mapping g is learnt.

VItV



Review of GNNs — 3

* Propagation Model*:

 Iteratively propagate node representations till convergence:
t) _ (t—1)
h’gj ) = f* (ZTJ? lCO(’U)? lNBR(v)a hNBR(’U))

* Relies on f* being a contraction mapping to converge to a fixed point.
» f* is decomposed as:

1 —1
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Review of GNNs - 4

* Propagation Model:

* Each f here is simply a linear transformation or a feed-forward neural
net:

F(lo Ly vy Lo h')) = Aol g U el bor)



Review of GNNs - 5

* Output Model:
* Node level outputs o, computed as: o, = g(h_,l ).

e o is a differentiable function mapping node embedding and labels to an
output.

e g is either linear transformation or a feed-forward network.

* May also handle graph-level outputs (stacking all node-embeddings).



Review of GNNs — 6

* Learning™: Almeida-Pineda Algorithm:
 Running propagation to convergence.
 Computing gradients based on converged solution.

* Avoids storing intermediate states for gradient computation, but
requires a contraction map f* / f.

* —1
hfgjt) — f (l’va ZCO(U)ﬁ lNBR(v)a h{\t]BR)(U))

e Implementation:
* Penalty on L1-norm on Jacobian of parameters.



Introducing Gated Graph NN

* Gated Graph NNs (GG-NNs) described for non-sequential
output.

* Uses GG-NNs to construct Gated Graph Sequence NNs (GGS-
NNs).

* Core Idea:
* Replaces propagation model with GRU.
 Unrolls recurrence for T time-steps (instead of till convergence).
e Uses Backprop-through-time to compute gradients.



Gated Graph NNs - 1

Node Annotations:

* The contraction map in GNNs converges to a fixed point
irrespective of initialization.

* In GG-NNs, can initialize node embeddings with additional
inputs — node annotations x

* £ denotes if a node is special.

* In the reachability problem:
* x, = [1,0]T, x, = [0,1]T
* Concatenate zeros to @ for initial node embeddings.



Gated Graph NNs - 2

Propagation Model:

3

h{" = [z, .0]" (1)

. T
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h® — tanh (Wa,ﬁ,” LU (r?; ® th”)) (5)

hi! = (1-2z)oh{"" +2z, o h.

* Computing a,®) is the heart of the propagation.

(6)



Gated Graph NNs - 3

Output Model:
* One step outputs:

* Node selection: o, = g(h, (1) x )
* Softmax over node scores o,.

* (Global outputs:

» “Graph-level representation vector”:

hg = tanh (Z Y (i(hg”, a;',v)) © tanh (j(hg”, Ty

veY

* i and j are feed-forward networks.



Gated Graph Sequence NNs

* GGS-NN: Several GG-NNs operate in sequence to produce
outputs o), 0@, ... oK),

« X = [x,®); x,(0;...x ) M)] is matrix of node annotations.

 May be initialized with 1-0 values, but in general are real
valued.

¢ 2 GG-NNs:
* ', — to predict ok from X&)
* F_— to predict X&) from X&)



Gated Graph Sequence NNs — 2
O . @ .

f‘o 1) F@

* H&Y = [h &9 h,&8  hy Y] are node representations.
« HkD set by concatenating 0 to X&),

* ' and F_ can have shared propagation models with separate
outputs, or have separate propagation models.



Gated Graph Sequence NNs — 3

* Node annotation output:
e To predict X&) from H&T),

',L,E}kﬁLl) — g (](hgk[) ',L,Ek)))

* Where j again is a feed-forward model.



Gated Graph Sequence NNs — 3

Two training settings:
* Providing only final supervised node annotation.

* Providing intermediate node annotations as supervision —

* Decouples the sequential learning process (BPTT) into independent
time steps.

e Condition the further predictions on the previous predictions.



bADbI

* 20 tasks to test forms of reasoning like counting / path-finding
/ deduction.

* Requires symbolic form to get “stories” — Sequences of relations
between entities, then convert them to a graph.

* Each entity is a node, each relation is an edge.
* The full story is a graph.

* (Questions are denoted as “eval”.



Grounding notation in bAbl

D is A

B 1s E

A has_fear F

G is F

E has fear H

F' has fear A

H has fear A

C is H

eval B has_fear H
eval G has_fear A
eval C has_fear A
eval D has_fear F




bAbI — 1

* Feed in the story as input.

* Evaluates different questions separately.



bAbI — 2

* Node annotations — n<ID>.
* Question types — q<<ID>.
* Eidge annotations — e<ID>.

* Trained without strong supervision or intermediate annotations.

* Heavily dependent on the symbolic form of these stories.



bAbI — 3

0 M W =
= B )|
M= O

eval path B A w,s

Shortest path problem: First defines the graph, then specifies
query.




bAbI — 4

» Competing representation provided to RNN / LSTM baselines:

no el nl eol no el nb5 eol nl el n2 eol nd4d el nb eol n3 el n4
eol n3 el nb eol n6 el nd4d eocl gl n6 n2 ans 1




bADbI — tasks.

Task 3: Three Supporting Facts

John picked up the apple.

John went to the office.

John went to the kitchen.

John dropped the apple.

Where was the apple before the kitchen? A:office

Task 4: Two Argument Relations

The ofhice 1s north of the bedroom.

The bedroom 1s north of the bathroom.

The kitchen 1s west of the garden.

What 1s north of the bedroom? A: office
What 1s the bedroom north of? A: bathroom

Task 5: Three Argument Relations

Mary gave the cake to Fred.

Fred gave the cake to Bill.

Jeff was given the milk by Bill.

Who gave the cake to Fred? A: Mary
Who did Fred give the cake to? A: Bill

Task 6: Yes/No Questions

John moved to the playground.
Daniel went to the bathroom.
John went back to the hallway.

Is John 1n the playground? A:no
Is Daniel in the bathroom? A:yes




bADbI — tasks.

Task 15: Basic Deduction

Sheep are afraid of wolves.

Cats are afraid of dogs.

Mice are afraid of cats.

Gertrude 1s a sheep.

What 1s Gertrude afraid of? A:wolves

Task 16: Basic Induction

Lily 1s a swan.

Lily 1s white.

Bernhard 1s green.

Greg 1s a swan.

What color 1s Greg? A:white

Task 17: Positional Reasoning

The triangle 1s to the right of the blue square.

The red square 1s on top of the blue square.

The red sphere 1s to the right of the blue square.

Is the red sphere to the right of the blue square? A:yes
Is the red square to the left of the triangle? A:yes

Task 18: Size Reasoning

The football fits in the suitcase.

The suitcase fits in the cupboard.

The box 1s smaller than the football.
Will the box fit in the suitcase? A:yes
Will the cupboard fit in the box? A:no

Task 19: Path Finding

The kitchen 1s north of the hallway.

The bathroom 1s west of the bedroom.

The den 1s east of the hallway.

The office 1s south of the bedroom.

How do you go from den to kitchen? A: west, north
How do you go from office to bathroom? A: north, west

Task 20: Agent’s Motivations

John 1s hungry.

John goes to the kitchen.

John grabbed the apple there.

Daniel 1s hungry.

Where does Daniel go? A:kitchen

Why did John go to the kitchen? A:hungry




bAbI — 5

* Results on bAbI Tasks: Subject-Object relations, Deduction,
Induction, and reasoning about size.

Task RNN LSTM GG-NN

bAbl Task 4 97.3+1.9 (250) 97.4+2.0(250) 100.040.0 (50)
bAbI Task 15 48.6+£1.9 (950) 50.3£1.3(950) 100.0£0.0 (50)
bADbI Task 16 33.04+1.9(950) 37.5+0.9 (950) 100.0+0.0 (50)
bADbI Task 18 88.9+0.9 (950) 88.9£0.8 (950) 100.0£0.0 (50)




bAbI — 6

* Results on the path-finding task (argued to be the hardest).

e Shortest path problem — finding the sequence of nodes from A
to B (unique solution).

Task RNN LLSTM GGS-NNs

bAbI Task 19 24.7+2.7 (950) | 28.2+1.3 (950) 71.14+14.7(50) 92.54+5.9(100) 99.04+1.1 (250)
Shortest Path 90.7+1.7(950) | 10.5+=1.2 (950) | 100.0£+ 0.0 (50)

Eulerian Circuit 0.3£0.2 (950) 0.1£0.2 (950) | 100.0£ 0.0 (50)




Take-aways

 Extend GNNs to sequential outputs.

* On simple tasks, with symbolic inputs, achieves pertect
accuracy with limited training input.

* Caveats:
* Very small networks (order of 250 parameters), relatively simple tasks.

* Restrictions on handling more general inputs, without symbolic
representations.



