

End to End Memory Networks a.k.a MemN2N¹

Varun Gangal, CMU Based on the work of 1. Sukhbaatar et al

Core Idea

Learn an end-to-end backproppable arch. which can **memorize** a long input and can then access and aggregate memories multiple times to generate output/answer.

Reading Comprehension QA setup

- Read sequence of sentences, answer single sentence Q
- Input Passage $X = x_1, x_2, x_3 \dots x_N$
- Input units x_i Here sentences No segmenter needed! Memories= m₁, m₂... m_N
- Single sentence question Q initialize controller
- Basic pipeline: Init u_1 to q, weigh memories w.r.t u_1 , take weighted aggregate o_1 , update u_1 to u_2 , continue process. Finally, use 1-step softmax or decoder

Mem keys

- How to represent each sentence as mem key vector?
- Various choices, arch. independent of this
- CBOW v(Sam)+v(ate)+v(food)
- CBOW+Temporal v(Sam)+v(ate)+v(food)+v(3)
- BiLSTM BiLSTM*(Sam ate food)+v(3)
- Etc, etc
- Here CBOW variants used in experiments
- Similarly for q CBOW/BiLSTM etc

Mem.Values

- Simplest case: Same as key c_i=m_i ; C=A
- Alternative: Use CBOW here, also but use separate embedding matrix
- Can have shared or different key-embeddings and value-embeddings for different hops. More on this later

Address-Read

Address $p_i = \operatorname{Softmax}(u^T m_i)$ $o = \sum_i p_i c_i.$

Update-Controller

$$u^{k+1} = u^k + o^k.$$

Predict

Read

$$\hat{a} = \operatorname{Softmax}(W(o+u))$$

a) 1-hop b) 3-hop

So What's New?

- <u>Sequence to Sequence Attn (Bahdanau et al, 15)</u>
 - Very similar, authors note too, just not sold as mem
 - That was more MT-specific, this is more QA-specific.
 - But truly new: Multiple hops
 - Mem can be shared across examples, attention can't. Distinction unexplored here.

So What's New?

- <u>Memory Networks (Weston et al, 15)</u>
 - Use **explicit supervision** for memory access
 - Take argmaxes (hard) instead of softmax (soft)
 - Single hop or double hop Multiple hops here
 - Point 2 seems like not such a big deal now that we have Gumbel-softmax-reparam etc, but both works precede that.

Param. Sharing across hops

- Most general case: Separate A_k , C_k for each hop
- But: Ease of training, inductive bias
- Layer-Wise: $A_{k+1} = A_k, C_{k+1} = C_k$
- Adjacent: $A_{k+1} = C_k$

RC Dataset: 20 bAbi tasks

- Each test one type of reasoning.
- Simple language, small vocab.
- No coreference, hierarchical clauses etc. Relevant subset also provided, this model doesn't use it.
 Original memnets did (they needed too, else you can't take argmaxes in between and backprop, not without Gumbel reparam atleast)

Examples

Sam walks into the kitchen. Sam picks up an apple. Sam walks into the bedroom. Sam drops the apple. Q: Where is the apple? A. Bedroom Brian is a lion.
Julius is a lion.
Julius is white.
Bernhard is green.
Q: What color is Brian?
A. White

Mary journeyed to the den. Mary went back to the kitchen. John journeyed to the bedroom. Mary discarded the milk. Q: Where was the milk before the den? A. Hallway

Some Tricks

- Inject random "noise" empty memory vectors 10% found to help
- CBOW+Position (Within-Sent)+Temporal (Sent-Index)

Baselines

- Strong-supervised MemNet: Not really fair to compare
- Question-Answer LSTM: Of course, but
 - Didn't get why not Question LSTM+Passage LSTM
 etc. Would have been fairer
- Heuristic MemNets Bias that first argmax sentence should word-overlap with question, second with answer.

Results

(Baseline				MemN2N							
						PE	1 hop	2 hops	3 hops	PE	PE LS	
	Supervised	LSTM	MemNN	12000		PE	LS	PELS	PELS	PE LS	LS RN	LW
Task	MemNN [22]	[22]	WSH	BoW	PE	LS	RN	joint	joint	joint	joint	joint
									•			
Mean error (%)	6.7	51.3	40.2	25.1	20.3	16.3	13.9	25.8	15.6	13.3	12.4	15.2
Failed tasks (err. > 5%)	4	20	18	15	13	12	11	17	11	11	11	10
On 10k training data												
Mean error (%)	3.2	36.4	39.2	15.4	9.4	7.2	6.6	24.5	10.9	7.9	7.5	11.0
Failed tasks (err. > 5%)	2	16	17	9	6	4	4	16	7	6	6	6

Story (1: 1 supporting fact)	Support	Hop 1	Hop 2	Hop 3
Daniel went to the bathroom.		0.00	0.00	0.03
Mary travelled to the hallway.		0.00	0.00	0.00
John went to the bedroom.		0.37	0.02	0.00
John travelled to the bathroom.	yes	0.60	0.98	0.96
Mary went to the office.		0.01	0.00	0.00
Where is John? Answer: bathroom	m Predicti	ion: bath	nroom	3.

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.	2542-2471	0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yello	w Predict	tion: yel	low	

Story (2: 2 supporting facts)	Support	Hop 1	Hop 2	Hop 3
John dropped the milk.		0.06	0.00	0.00
John took the milk there.	yes	0.88	1.00	0.00
Sandra went back to the bathroom.		0.00	0.00	0.00
John moved to the hallway.	yes	0.00	0.00	1.00
Mary went back to the bedroom.		0.00	0.00	0.00
Where is the milk? Answer: hallway	Predictio	n: hallwa	y	

Story (18: size reasoning)	Support	Hop 1	Hop 2	Hop 3
The suitcase is bigger than the chest.	yes	0.00	0.88	0.00
The box is bigger than the chocolate.		0.04	0.05	0.10
The chest is bigger than the chocolate.	yes	0.17	0.07	0.90
The chest fits inside the container.	S	0.00	0.00	0.00
The chest fits inside the box.		0.00	0.00	0.00
Does the suitcase fit in the chocolate?	Answer:	no Pre	diction: n	10

Language Modelling

- P(w_i | w1, ... w_(i-1))
- Memories = Words seen so far Again no segmenter
- Query Fixed question vector
 Maybe better: Fixed+RNN composition of words
- PTB (small), Text8 (Large)
- Comparable results, not impressive
 - Only 7-hop MemN2N-LM beats LSTM-LM

	Penn Treebank				Text8					
	# of	# of	memory	Valid.	Test	# of	# of	memory	Valid.	Test
Model	hidden	hops	size	perp.	perp.	hidden	hops	size	perp.	perp.
RNN [15]	300	-	-	133	129	500	-			184
LSTM [15]	100	-	-	120	115	500	-	-	122	154
SCRN [15]	100	-	-	120	115	500	-	-	-	161
MemN2N	150	2	100	128	121	500	2	100	152	187
	150	3	100	129	122	500	3	100	142	178
	150	4	100	127	120	500	4	100	129	162
	150	5	100	127	118	500	5	100	123	154
	150	6	100	122	115	500	6	100	124	155
	150	7	100	120	114	500	7	100	118	147
	150	6	25	125	118	500	6	25	131	163
	150	6	50	121	114	500	6	50	132	166
	150	6	75	122	114	500	6	75	126	158
	150	6	100	122	115	500	6	100	124	155
	150	6	125	120	112	500	6	125	125	157
	150	6	150	121	114	500	6	150	123	154
	150	7	200	118	111	-	-	-	-	-

Conclusion, Concerns, Future Work

- Good on QA, OKish on LM
- Weak (rather, non-overstrong) supervision, multi-hop
- Concern 1: Softmax and aggregation over all memories prohibitive when mem.space is large. Hashing
- Concern 2: Hops hyperparam. Not dynamic
- Concern 3: Memories not written/updated.
- 20 min MSR Talk by Sainbayar Sukhbaatar: https://www.youtube.com/watch?v=ZwvWY9Yy76Q