Differentiable Programs with
Neural Libraries

Gaunt, Brockschmidt, Kushman and Tarlow (2017)

Presented by Ben Striner

Perceptual Programming by Example (PPBE)

* Programming by Example
* Provide input and output examples
» Task is to infer a program that satisfies examples

* Perceptual tasks make PPBE

“INustrative”

NTPT Program

Declaration & initialization Instruction Set Execution model Solution
constants # Discrete operations for t in range(T - 1): instr = [3,2,0]
max_int = 15; n_instr = 3; T = 45 @Runtime([max_int], max_int) if dir[t] == # halted goto = [1,2,0]
W=25; H=3; w=25@; h =50 def INC(a): dir[t + 1].set_to(dir[t])
variables return (a + 1) % max_int X[t + 1].set_to(X[t])
. < Y[t + 1].set_to(¥Y[t])
img_grid = InputTensor(w, h)[W, H] @Runtime([max_int], max_int) (
Mg _ 3 _ reg[t + 1].set_to(reg[t])
init_X = Input(W) def DEC(a): elee: L&
init Y = Input(H) return (a - 1) % max_int with instr ptrt] as i:
final_X = Output(W) i t_[] - # INC ,
final ¥ = Output(Y) @Runtime([W, 5], W) * ln[str 11]"t to(INC(reg[t + 11)) dir = LOOK
path_len = Output(max_int) def MOVE_X(x, dir): ifriﬁstr‘Ei] ;fe —te " DEEeg * halt if dir==0
. . if dir == 1: return (x + 1) % W # - T -
instr = Par‘am(ﬁf)!n_lnstr']. elif dir == 3: return (x - 1) % W # < reg[t + 1].set_to(DEC(reg[t + 1])) L L1
goto = Param(n_instr)[n_instr] else: return x else: . l
X = Var(W)[T] . reg[t + 1].set_to(reg[t]) L1
Y = Var(H)[T] @Runtime([H, 5], H)
dir = Var(5)[T] def MOVE_Y(y, dir): if instr[i] == 2: # MOVE
reg = Var(max_int)[T] iF. d::Lr == 2: peturn (y - 1) ¥ H # 1 X[t + 1].set_to(MOVE_X(X[t], d%r'[t])) MOVE(diI"‘}
. : elif dir == 4: return (y + 1) % H # | Y[t + 1].set_to(MOVE_Y(Y[t], dir[t]))
instr_ptr = Var(n_instr)[T] L2
else: return y else: L
X[@].set_to(init_X) . X[t + 1].set_to(X[t]) |
Y[8].set_to(init_Y) # Learned operations X[t + 1].set_to(Y[t]) L2
dir[@].set_to(1) @Learn([Tensor(w, h)], 5,
reg[@].set_to(@) e if instr[i] == # LOOK
instr_ptr[@].set_to(@) def LOOK(img): with pos[t] as p: reg = INC(reg)
2B dir[t + 1].set_to(LOOK(img_grid[p])) Le
else: -
dir[t + 1].set_to(dir[t])
init X = @ ~
Input-output init ¥ = 1 instr_ptr[t + 1].set_to(goto[i]) E“:n
data set final X = 4 final_X.set_to(X[T - 1]) LOOK : = | I
final Y =2 final_Y.set_to(X[T - 1])
path_len = 7 path_len.set_to(reg)
— —

Figure 1: Components of an illustrative NTPT program for learning loopy programs that measure path length (path_len) through a
maze of street sign images. The learned program (parameterized by instr and goto) must control the position (X, Y) of an agent on a
grid of (Wx H) street sign images each of size (wxh). The agent has a single register of memory (reqg) and learns to interpret street signs
using the LOOK neural function. A solution consists of a correctly inferred program and a trained neural network. Learnable components
are shown in blue and the NTPT extensions to the TERPRET language are highlighted. The red path on the img_grid shows the desired
behavior and is not provided at training time.

Differentiable Programs

* Functions and conditionals differentiable w.r.t. variables

e Function application. The statement
z.set_to(foo(x, y)) is translated into
i = ij Iréjk,li.;‘:}ﬂz where p® represents the

marginal distribution for the variable a and I is an

indicator tensor 1[i = foo(j,k)]. This approach
extends to all functions mapping any number of

integer arguments to an integer output.

e Conditional statements The statements if x
== (Q: z.set_to(a); elif x ==
z.set_to (b) are translated to p* = pf pu® + p¥pb.
More complex statements follow a similar pattern,
with details given in (Gaunt et al., 2016).

Lifelong Learning

* Train model on a sequence of tasks
* Evaluate knowledge transfer
 Evaluate extinction

«(+H

(a) (b) (c)
fl-.—g. 4 ,Ll
1« 4 [. |
Bl g8 g (e 3 -
, , 5 , ,
2% 10 — H+ [o-3
i/

7 11 5 14J ﬁ[7[XI[i][+ [‘5/ =11

Figure 2: Overview of tasks in the (a) ADD2X2, (b) APPLY2X2 and (c) MATH scenarios. ‘A’ denotes the APPLY operator which
replaces the ? tiles with the selected operators and executes the sum. We show two MATH examples of different length.

Add2x2

* Given MINIST digits and operator indicators, calculate output

(a)

(a)
W e e NOOP: a trivial no-operation instruction.
J -S-F' A > 8 # 1nitialization:
| - R® = READ e MOVE_ NORTH, MOVE_EAST, MOVE_SOUTH,
— —) # program: MOVE_WEST: translate the head (if possible) and
12 | 8’ 7»19 Rl = MOVE_EAST - , , . (po }?
R? = MOVE_SOUTH return the result of applying the neural network
- — R3 = SUM(RO®, R1) chosen by net _choice to the image in the new cell.
@ (.IJ R4 - NOOP
7 11 return R3 e ADD (-,-): accepts two register addresses and returns

the sum of their contents.

Apply2x2

* Given handwritten operators and digit indicators, calculate output
e APPLY instead of ADD

(b) (b)
A

1nitialization:

I

4) R® = InputInt[0]

N3 | + A A~ 14 R1 = InputInt[1]

: S— | S— R2 = InputInt[2]
k) ‘ ‘ R3 = READ
— H -} 3 # program:

j J R4 = MOVE_EAST
r— 1 R5 = MOVE_SOUTH
K?f R6 = APPLY(R®, R1, R4)

RY APPLY(R6, R2, RS)
5 14 return R7

Math!

* Given mnist digits and handwritten operators of variable lengths,
calculate an output

Knowledge Transfer

e Two NN functions shared between scenarios
* Both 2 layer relu with softmax
* One with 10 outputs, one with 4

* Operator and MNIST recognition can be shared
* Only one new net can be trained at a time

Baseline Models

* Baseline for task 1 and 2 is a simple MLP
* Operates on concatenated features

e Each of the images in the 2 x 2 grid is passed through
° Baseline taSk 3 iS LSTM an embedding network with 2 layers of 256 neurons
(cf. net_0/1) to produce a 10-dimensional embed-
ding. The weights of the embedding network are
shared across all 4 images.

e These 4 embeddings are concatenated into a 40-
dimensional vector and for the APPLY2X?2 the aux-
iliary integers are represented as one-hot vectors and
concatenated with this 40-dimensional vector.

e This is then passed through a network consisting of
3 hidden layers of 128 neurons to produce a 19-
dimensional output.

Baseline Models (Cartoon Version)

(a) indep. (b) PNN (c) MTNN (d) NTPT
TASK 1 TASK 3

19| OIID O EII?III DITD oI RE = R RG = R
IIIIIJJ:I OOommm Oomorimm I‘IT‘IIF“I'I‘I Rl =1 R1 ="
128 1 1 1 R2 = 5 R2 = I
128 OO [amamans nnnl R3 = B R3 =5
1 1 ¢ t RA = R4 = N
[CILITITITN] IIITITIT o return

= ‘-1___*1,______., 4 - I

concat concat concat concat { .
= Library

-
EF_H"

10

momm
i
[T]
256I:|I£II T [T T

256|000 (mmnamEREEE; : |'II';1:II'II r’TI'"I][':I‘I'I"I'I
- . e
[{

{ 232 1-1+]
o’ o
=[]+ 2 [-]+]

{232+ [-]+] 8328+

4
(EIE}
)2

[)+]
[+)+]

Figure 5: Cartoon illustration of all models used in the 2 X 2 experiments. See text for details.

Results

task indep PNN MTNN-1 MTNN-2 NTPT

o fop 35% 35% 26% 24% 87%
o1 left 329 36% 38% 47% 87%
o bottom 34% 33% 40% 5650 B6%
< right 32% 35% 449 60% B6%
& top 38% 39% 40% 38% Q8%
D left 39% 51% 41% 39% 100%
g bottom 39% 48% 41% 40% 100%
< right 39% 51% 42% 37% 100%

Figure 7: Final accuracies on all 2 x 2 tasks for all models at the
end of lifelong learning

Generalization

—
W

100 100
g 92.8
oy
& 50t
o s Neural GPU (43.8M)

‘t-'f — L STM {21.1M) 25.0
——TerpreT (32)
D 1 1 1
(b) 100 —
L5TM - 2digit
= LSTM - sdigit
z —NTPT - 2digit
m 90 |
o
2 87.1
o
" 82.8
80 1 1 1
0 5 10 15

digits in expression

Figure 8: Generalization behavior on MATH expressions. Solid
dots indicate expression lengths used in training. We show results
on (a) a simpler non-perceptual MATH task (numbers in paren-
theses indicate parameter count in each model) and (b) the MATH
task including perception.

Optimization Difficulties

* Train on expressions with 2 digits
» 2/100 random restarts converge
* Loopy program “provably generalizes perfectly” to longer sequences

Avoiding Forgetting

* Set learning rate of perceptual parts to 1/100 of task-specific parts

Details

* Probably minimizing cross entropy with correct answer
* Trains using expectation over instructions
e Each variable is a distribution over integers

Thank you

Questions/Discussion?

