Differentiable Programs with Neural Libraries

Gaunt, Brockschmidt, Kushman and Tarlow (2017)

Presented by Ben Striner

Perceptual Programming by Example (PPBE)

- Programming by Example
 - Provide input and output examples
 - Task is to infer a program that satisfies examples
- Perceptual tasks make PPBE

"Illustrative" NTPT Program

Declaration & initialization	Instruction Set	Execution model	Solution
<pre># constants max_int = 15; n_instr = 3; T = 45 W = 5; H = 3; w = 50; h = 50 # variables img_grid = InputTensor(w, h)[W, H] init_X = Input(W) init_Y = Input(H) final_X = Output(W) final_Y = Output(Y) path_len = Output(max_int) instr = Param(4)[n_instr] goto = Param(n_instr)[n_instr] X = Var(W)[T] Y = Var(H)[T] dir = Var(f)[T] reg = Var(max_int)[T] instr_ptr = Var(n_instr)[T] X[0].set_to(init_X) Y[0].set_to(1) reg[0].set_to(0) instr_ptr[0].set_to(0)</pre>	<pre># Discrete operations @Runtime([max_int], max_int) def INC(a): return (a + 1) % max_int @Runtime([max_int], max_int) def DEC(a): return (a - 1) % max_int @Runtime([W, 5], W) def MOVE_X(x, dir): if dir == 1: return (x + 1) % W # → elif dir == 3: return (x - 1) % W # ← else: return x @Runtime([H, 5], H) def MOVE_Y(y, dir): if dir == 2: return (y - 1) % H # ↑ elif dir == 4: return (y + 1) % H # ↓ else: return y # Learned operations @Learn([Tensor(w, h)], 5, hid_sizes=[256,256]) def LOOK(img): pass</pre>	<pre>for t in range(T - 1): if dir[t] == 0: # halted dir[t + 1].set_to(dir[t]) X[t + 1].set_to(Y[t]) Y[t + 1].set_to(Y[t]) reg[t + 1].set_to(reg[t]) else: with instr_ptr[t] as i: if instr[i] == 0: # INC reg[t + 1].set_to(INC(reg[t + 1])) if instr[i] == 1: # DEC reg[t + 1].set_to(DEC(reg[t + 1])) else: reg[t + 1].set_to(reg[t]) if instr[i] == 2: # MOVE</pre>	<pre>instr = [3,2,0] goto = [1,2,0] L0 if not halted: dir = LOOK halt if dir == 0 goto L1 L1 if not halted: MOVE(dir) goto L2 L2 if not halted: reg = INC(reg) goto L0</pre>
Input-output data set img_grid =	<pre>init_X = 0 init_Y = 1 final_X = 4 final_Y = 2 path_len = 7</pre>	<pre>else: dir[t + 1].set_to(dir[t]) instr_ptr[t + 1].set_to(goto[i]) final_X.set_to(X[T - 1]) final_Y.set_to(X[T - 1]) path_len.set_to(reg)</pre>	LOOK : =

Figure 1: Components of an illustrative NTPT program for learning loopy programs that measure path length (path_len) through a maze of street sign images. The learned program (parameterized by instr and goto) must control the position (X, Y) of an agent on a grid of ($W \times H$) street sign images each of size ($w \times h$). The agent has a single register of memory (reg) and learns to interpret street signs using the LOOK neural function. A solution consists of a correctly inferred program and a trained neural network. Learnable components are shown in blue and the NTPT extensions to the TERPRET language are highlighted. The red path on the img_grid shows the desired behavior and is not provided at training time.

Differentiable Programs

Functions and conditionals differentiable w.r.t. variables

- Function application. The statement z.set_to(foo(x, y)) is translated into $\mu_i^z = \sum_{jk} I_{ijk} \mu_j^x \mu_k^y$ where μ^a represents the marginal distribution for the variable *a* and *I* is an indicator tensor $\mathbb{1}[i = foo(j,k)]$. This approach extends to all functions mapping any number of integer arguments to an integer output.
- Conditional statements The statements if x == 0: z.set_to(a); elif x == 1: z.set_to(b) are translated to $\mu^z = \mu_0^x \mu^a + \mu_1^x \mu^b$. More complex statements follow a similar pattern, with details given in (Gaunt et al., 2016).

Lifelong Learning

- Train model on a sequence of tasks
- Evaluate knowledge transfer
- Evaluate extinction

Figure 2: Overview of tasks in the (a) ADD2x2, (b) APPLY2x2 and (c) MATH scenarios. 'A' denotes the APPLY operator which replaces the ? tiles with the selected operators and executes the sum. We show two MATH examples of different length.

Add2x2

• Given MNIST digits and operator indicators, calculate output

- NOOP: a trivial no-operation instruction.
- MOVE_NORTH, MOVE_EAST, MOVE_SOUTH, MOVE_WEST: translate the head (if possible) and return the result of applying the neural network chosen by net_choice to the image in the new cell.
- ADD (.,.): accepts two register addresses and returns the sum of their contents.

Apply2x2

- Given handwritten operators and digit indicators, calculate output
- APPLY instead of ADD

(b)

initialization: InputInt[0] = InputInt[1] = InputInt[2] = = READ program: MOVE_EAST = MOVE_SOUTH APPLY(R0, R1, R4)R6 = R7 = APPLY(R6, R2, R5) return R7

Math!

• Given mnist digits and handwritten operators of variable lengths, calculate an output

Knowledge Transfer

- Two NN functions shared between scenarios
 - Both 2 layer relu with softmax
 - One with 10 outputs, one with 4
- Operator and MNIST recognition can be shared
- Only one new net can be trained at a time

Baseline Models

- Baseline for task 1 and 2 is a simple MLP
- Operates on concatenated features
- Baseline task 3 is LSTM

- Each of the images in the 2 × 2 grid is passed through an embedding network with 2 layers of 256 neurons (cf. net_0/1) to produce a 10-dimensional embedding. The weights of the embedding network are shared across all 4 images.
- These 4 embeddings are concatenated into a 40dimensional vector and for the APPLY2X2 the auxiliary integers are represented as one-hot vectors and concatenated with this 40-dimensional vector.
- This is then passed through a network consisting of 3 hidden layers of 128 neurons to produce a 19-dimensional output.

Baseline Models (Cartoon Version)

Figure 5: Cartoon illustration of all models used in the 2×2 experiments. See text for details.

Results

	task	indep	PNN	MTNN-1	MTNN-2	NTPT
ot to el DD2X3 titod DD2 rig	top	35%	35%	26%	24%	87%
	left	32%	36%	38%	47%	87%
	bottom	34%	33%	40%	56%	86%
	right	32%	35%	44%	60%	86%
VERTY CAPTLY Control of the second se	top	38%	39%	40%	38%	98%
	left	39%	51%	41%	39%	100%
	bottom	39%	48%	41%	40%	100%
	right	39%	51%	42%	37%	100%

Figure 7: Final accuracies on all 2×2 tasks for all models at the end of lifelong learning

Generalization

Figure 8: Generalization behavior on MATH expressions. Solid dots indicate expression lengths used in training. We show results on (a) a simpler non-perceptual MATH task (numbers in parentheses indicate parameter count in each model) and (b) the MATH task including perception.

Optimization Difficulties

- Train on expressions with 2 digits
- 2/100 random restarts converge
- Loopy program "provably generalizes perfectly" to longer sequences

Avoiding Forgetting

• Set learning rate of perceptual parts to 1/100 of task-specific parts

Details

- Probably minimizing cross entropy with correct answer
- Trains using expectation over instructions
- Each variable is a distribution over integers

Thank you

Questions/Discussion?