2

Programming With A
Differentiable Forth Interpreter

Varun Gangal, CMU
Based on the work of

Matko Bosnjak et al

What's Forth?

Kind of like a cross between Python and Assembly
High-level imperative programming language BUT

Can manipulate registers, stack exposed, load-stores
It's nicel because it is close to natural language (even
Python is), but without assuming many layers of
abstraction or compiling below (exposes stack etc)
It's dangerous! No type-checking, no scope, no
data-code separation, no mem.management

Reverse Polish Notation

Postfix as opposed to infix notation

Simple notion of precedence, no lookahead

34 +; not 3+4; 234*+ not 2+3*4

No arguments or return values, no stack management
One stack for all functions to operate on.

Stack operations: SWAP, DROP, DUP

Advantages: Super-fast execution, compilation

Example Code in Forth

9l + BORT (al .. an n — sortea)

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP
11| :

12| 2 4 2 7 4 SORT \ Example call

Literals pushed to DSTACK

Call SORT, PC pushed to RSTACK

TOS = Top of Stack, NOS = End of Stack

1- deducts TOS by 1. DUP duplicates TOS etc etfc

Quotable Quotes

e "If C gives you enough rope to hang yourself with,
FORTH is a flamethrower crawling with cobras”

Program State in Forth

DStack D : All operations,

RStack R : Return address, Buffer stack

Heap H

Program counter c: Next statement to be executed

AP OWON -

P—»

X —P|

Low-level code

>R

CURRENT REPR

>R

Execution HND :

{permute. .

-}

{choose...
{choose. ..

{choocse..

}
}

-}

R

'3 BILSTM

A

Partial Procedural Knowledge

How to visit a sequence

How to fraverse a tree

Sketch : An incompletely specified code fragment.
Provide a procedural prior

Recollect rule templates from last time - kind of like
that

What our model includes

1.

NOoO O AW

Does the job of the compiler (maintain and update
program state)

Takes in inputs (also inits program state with them)
Takes in partially specified programs a k.a sketches
Learns learnable part of the programs

Trained on input-output pairs

Point 1 grants us end-to-end differentiability

It also makes our reads, writes, PC soft (uncertain)

What are we trying to do here?

Program statement = Transition function f: S -> S
Program = Transition Composition

Output = Program(Input) -> Program encodes prior
Sketches (more in detail later) : Incompletely
specified statements/functions - sort of like rule
templates from the logic stuff last time

In this paper, all the transition functions are
differentiable. The NN model is the compiler.

10

Let’s kind of
walkthrough a Forth
program - Bubble Sort

1| : BUBBLE (al ... an n-1 —— one pass)

2 DUP IF >R

3a OVER OVER < IF SWAP THEN

4a R> SWAP >R 1- BUBBLE R>

3b { observe DO D-1 -> permute D-1 DO RO}
4b 1- BUBBLE R>

3c { observe D0 D-1 -> choose NOP SWAP }
4c R> SWAP >R 1- BUBBLE R>

5 ELSE

6 DROP

7 THEN

8| 7

9l ¢« SORT (al .. an n — sorted)

10 1- DUP 0 DO >R R@ BUBBLE R> LOOP DROP

11] :2

12| 2 4 2 7 4 SORT \ Example call

Just focus on the green lines for now! - Other 2 are sketches

D R ¢ comment
1 [] [] 11 execution start
2 | [24274] [] 8 pushing sequence to D), calling
SORT subroutine puts Agort to R
3 | [24273] [Asorr] 9 1-
4 | [242733] [AsorT] ’ 9 DUP
6 | [2427330] | [AsorT] 9 0
7 | [24273] [Addrsogrt] 9 DO
8 [2427] [AddrsogrT 3] 9 >R
9 |[24273] [AddrsogrT 3] 9 @R

Before the function call; Loop

13

10

11
12
13

14
15
16
L7

18
19
20
21
22

[2427 3]

[242733]
[2427 3]
[2427]

[242727]
2427 1]
[2427]
247 2]

[24723]
[24.73 2]
[247 3]
[2472]
[2472]

[Asorr 3 AgusBLE]

[Asort 3 AsuBBLE]
[Asort 3 AsuBBLE]
[Asort 3 ApussLE 3]

[Asort 3 ApuBsLE 3]
[AsorT 3 ApussLE 3]
[Asort 3 ApussLE 3]
[Asort 3 ApussLE 3]

[Asort 3 AguBBLE]
[Asort 3 AuBBLE]
[Asort 3 ApuBsLE 2]
[AsorT 3 ApuBBLE 2]
[Asort 3 ABUBBLE 2]

Inside the Bubble Routine

[Gy

O W L W W b NN

calling BUBBLE subroutine puts
AgusplE to R

DUP

IF

>R

OVER OVER
<

IF

SWAP

R >
SWAP
>R

|
...BUBBLE

14

readyi(a)=a’ M
writens(x,a): M« M— (a1’) oM +xa’

inc(p) =p’ R+
dec(p) =p' R~

Primitives - read, write, shift-increment, shift-decrement

15

pushy,(x) : writeps (X,p) (side-effect: p <—inc(p))

popp () =readn (p) (side-effect: p <+—dec(p))

Conditional jump a jump(c,a):p=(popp()=TRUE)
c+pc+(l-p)a

Composites -push, pop

16

DUP pushp (readp(d))

SWAP r=readp(d), y=readp(d!)
:writep (d,y) , writep(d 1, z)
OVER pushp (readp(d))
DRO? o)
o= *y writep ({op}(readp(d™!),readp(d)),d)
IF..;ELSE. .,THEN p=(popp()=0)

p*..1—|—(1—p)*..2

Composites - OVER, DUP, SWAP, IF.. ELSE

17

observe ¢i...€e,

choose w;i... w,,

manipulate e;...e,,

-

permute e¢;...ey,

Sketches - Partial transition funcs, enc and dec specified

18

Execution - use program counter as attention vector

19

O b = B L

O - oy N oo

01234 BT 28 B EAE ey
Rir
OJ [] []
L] [] [] O
(]] H H H O]
[]] O
]] [] (]
] D|d [] [] [
: BUBBLE : BUBBLE : BUBBLE : BUBBLE
DUP DUP DUP DUP
BRANCHO 8 BRANCHO 8 BRANCHO 8 BRANCHO 8
>R >R [| >R >R
— e || Conad m Yo i)
1- 1- o 1- | 1-
BUEBEBLE BEUERBLE BUEEBLE || BUEBBLE
R> R> R> R>
DROP Plc DROP DROP DROP

Traces - Discrete Init, later everything's soft

Optimizations - For shorter gradient paths, faster training

e When no entry-exit, get composite transition function (symbolically)

21

Training

1. Training is based based on final stack state and stack
pointer.

2. Includes a mask (to consider only elements <stack
depth).

+H(K;0dr(0,x;),K;OyY)

H(Xa Y) = —X 10g Y

22

Sorting

Table 1: Accuracy (Hamming distance) of Permute and
Compare sketches in comparison to a Seq2Seq baseline on
the sorting problem.

Test Length 8 Test Length: 64
Train Length: 2 3 4 2 3 4
Seq2Seq 262 292 39.1 13.3 136 159

04 Permute 100.0 100.0 19.82 100.0 100.0 7.81
04 Compare 100.0 100.0 49.22 100.0 100.0 20.65

Word Problems Dataset - Examples

A florist had 50 roses. If she sold 15 of them and then later
picked 21 more, how many roses would she have?

Ryan has 72 marbles and 17 blocks. If he shares the
marbles among 9 friends, how many marbles does
each friend get?

Roy & Roth '15. CC. 4 basic operators, upto 3 operands
Prior approaches map to expressions e.g (50-15)+21
This one solves directly

About 150 each for train, dev, test

24

Encoding the question

e BIiLSTM to encode the question
e What's used: States corresponding to numbers, and
the final state, also numbers themselves

Execution HNQ ;_I___ _t o __'i' _______ |
B H Y H(EE H
Pooo=n B (|
e |- E O O mo B
el
D:.:l ' O A
.. b el —:H:H:H:H’E_mkﬂ BILSTM
¢ § L -
] H Pl A
—> : P R AP
Si y ; : Ned had to wash mshorts

25

42
43

45

47

48
49

permute stack elements, based on the question and number representations
observe RO R-1 R-2 R-3 -> permute DO D-1 D-2 }

choose the first operation

observe R0 R-1 R-2 R-3 -> choose + - * / }

choose whether to swap intermediate result and the bottom number
observe R0 R-1 R-2 R-3 -> choose SWAP NOP }

choose the second operation

observe R0 R-1 R-2 R-3 -> choose + - = / }

e T i T

Key part of Word Problem Sketch

26

Model Accuracy (%)
Template Mapping

Roy & Roth (2015) 33.5

Seq2Seq™ (Bouchard et al., 2016) 95.0

GeNeRe* (Bouchard et al., 2016) 98.5
Fully End-to-End

04 96.0

Results - Beats S2S Baseline

27

1.0 compare Py P
=& permute
Seq2Seq (test 3)
—l— Seq2Seq (test 8)

0.8

Accuracy
=
(=)

(A

0.4

0.2

4 8 16 32 64 128 256 512 1024
training examples

Sketch-based Models generalize well across lengths - Sorting

28

1.0 choose & L 2 & 2 B
=8— manipulate
Seq2Seq (test 8)
—— Seq2Seq (test 16)

0.8

Accuracy
<
2]

<
=

0.2
:/./.__./J—Iﬂ—’"*.\'—"/.

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
training examples

Sketch-based Models generalize well across lengths - Adding

29

“3'16{]“

wnun

T
o
N
i

d

100 <
8

SAllE[9Y

Do the optimizations help?

30

N N

T

=
T

s
i
o

(b) Program Counter trace in the middle of training.
(c) Program Counter trace at the end of training.

How the PC was trained

31

0O 1 O BN

10
11

13
14
15
16

18
19
20
2k

aRe

27
28
2!
30
31
32

=]

34
3
36
37
38
39

G

\ address of the question on H

VARIABLE QUESTION

\ allotting H for representations and numbers
CREATE REPR_BUFFER 4 ALLOT

CREATE NUM_BUFFER 4 ALLOT

\ addresses of the first representation and number
VARIABLE REPR

VARIABLE NUM

REPR_BUFFER REPR
NUM_BUFFER NUM !

\ macro function for incrementing the pointer to numbers in H
MACRO: STEP_NUM
NUM @ 1+ NUM !

’

\ macro function for incrementing the pointer to representations in H
MACRO: STEP_REPR
REPR @ 1+ REPR

’

\ macro functions for fetching current numbers and representations
MACRO: CURRENT_NUM NUM @ @ ;
MACRO: CURRENT_REFR REPR @ @ ;

\ copy numbers to D
CURRENT_NUM
STEP_NUM
CURRENT_NUM
STEP_NUM
CURRENT_NUM

\ copy question vector, and representations of numbers to R
QUESTION @ >R

CURRENT_REPR >R

STEP_REPR

CURRENT_REPR >R

STEP_REPR

CURRENT_REPR >R

32

