
Varun Gangal, CMU
Based on the work of
 Matko Bosnjak et al

1

Programming With A
Differentiable Forth Interpreter

What’s Forth?

● Kind of like a cross between Python and Assembly
● High-level imperative programming language BUT
● Can manipulate registers, stack exposed, load-stores
● It’s nice! because it is close to natural language (even

Python is), but without assuming many layers of
abstraction or compiling below (exposes stack etc)

● It’s dangerous! No type-checking, no scope, no
data-code separation, no mem.management

2

Reverse Polish Notation

● Postfix as opposed to infix notation
● Simple notion of precedence, no lookahead
● 3 4 + ; not 3+4; 234*+ not 2+3*4
● No arguments or return values, no stack management
● One stack for all functions to operate on.
● Stack operations: SWAP, DROP, DUP
● Advantages: Super-fast execution, compilation

3

Example Code in Forth

● Literals pushed to DSTACK
● Call SORT, PC pushed to RSTACK
● TOS = Top of Stack, NOS = End of Stack
● 1- deducts TOS by 1. DUP duplicates TOS etc etc

4

Quotable Quotes
● “If C gives you enough rope to hang yourself with,

FORTH is a flamethrower crawling with cobras”

5

Program State in Forth

1. DStack D : All operations,
2. RStack R : Return address, Buffer stack
3. Heap H
4. Program counter c: Next statement to be executed

6

7

Partial Procedural Knowledge
● How to visit a sequence
● How to traverse a tree
● Sketch : An incompletely specified code fragment.
● Provide a procedural prior
● Recollect rule templates from last time - kind of like

that

8

What our model includes

1. Does the job of the compiler (maintain and update
program state)

2. Takes in inputs (also inits program state with them)
3. Takes in partially specified programs a.k.a sketches
4. Learns learnable part of the programs
5. Trained on input-output pairs
6. Point 1 grants us end-to-end differentiability
7. It also makes our reads, writes, PC soft (uncertain)

9

What are we trying to do here?

● Program statement = Transition function f: S -> S
● Program = Transition Composition
● Output = Program(Input) -> Program encodes prior
● Sketches (more in detail later) : Incompletely

specified statements/functions - sort of like rule
templates from the logic stuff last time

● In this paper, all the transition functions are
differentiable. The NN model is the compiler.

10

Let’s kind of
walkthrough a Forth
program - Bubble Sort

11

12

Just focus on the green lines for now! - Other 2 are sketches

Before the function call; Loop
13

Inside the Bubble Routine
14

Primitives - read, write, shift-increment, shift-decrement
15

Composites -push, pop
16

Composites - OVER, DUP, SWAP, IF.. ELSE
17

Sketches - Partial transition funcs, enc and dec specified
18

Execution - use program counter as attention vector
19

Traces - Discrete Init, later everything’s soft
20

Optimizations - For shorter gradient paths, faster training

● When no entry-exit, get composite transition function (symbolically)

21

1. Training is based based on final stack state and stack
pointer.

2. Includes a mask (to consider only elements <stack
depth).

22

Training

Sorting

23

● Roy & Roth ‘15. CC. 4 basic operators, upto 3 operands
● Prior approaches map to expressions e.g (50-15)+21
● This one solves directly
● About 150 each for train, dev, test

24

Word Problems Dataset - Examples

Encoding the question
● BiLSTM to encode the question
● What’s used: States corresponding to numbers, and

the final state, also numbers themselves

25

Key part of Word Problem Sketch
26

Results - Beats S2S Baseline
27

28

Sketch-based Models generalize well across lengths - Sorting

Sketch-based Models generalize well across lengths - Adding
29

Do the optimizations help?
30

How the PC was trained
31

32

