
Inferring and Executing Programs for Visual Reasoning

Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Judy Hoffman, Li Fei-Fei, C.Lawrence Zitnick, Ross Girshick

Presenter: Siliang Lu
9/26/2017



What is visual reasoning?

• In order to deal with complex visual question
answering, it might be necessary to explicitly
incorporate compositional reasoning in the model.

• I.e. Without having seen ”a person touching a bike”,
the model should be able to understand the phrase
by putting together its understanding of “person”,
“bike” and “touching”.

• Different from visual recognition where models learn
direct input-output mappings to learn dataset biases



What is visual reasoning?

• Inputs:
An image x and a visual question q about the image

• Intermediate outputs:
A predicted program z = 𝜋(𝑞) representing the reasoning
steps required to answer the question and an execution
engine 𝜙 𝑥, 𝑧 executing the program on the image to
predict an answer

• Output:
An answer a ∈ 𝐴 to the question from a fixed set A of
possible answers

Program generator z and execution engine	𝝓



Innovations compared with state-of-arts

• Module network: a syntactic parse of a question to determine the
architecture of the network
Existing research: hand-designed off-the-shelf syntactic parser
Current research: a learnt program generator that can adapt to the task at hand

• Semantic parser
Existing research: the semantics of the program and the execution engine are fixed
and known a priori
Current research: learn both the program generator and the execution engine

• Program-induction methods
Existing research: the interpretation of neural program considers only simple
algorithms and program-induction assumes knowledge of the low-level operations
Current research: the program generator consider inputs comprising an image and
an associated question while assume minimal prior knowledge



What is program generator and execution engine?
Programs: focused on learning semantics for a fixed syntax

• Pre-specifying a set F of functions f, each of which has a fixed arity 𝑛. = 1,2
• Including in the vocabulary a special constant Scene representing the visual

features of the image
• A valid program z is represented as syntax tress where each node contains a

function f

Execution engine: creating a neural network mapping to each function f

• The program z is used to assemble a question-specific neural network
composed from a set of modules

• Generic architecture for all unary module, binary module and Scene module



Program generator
Are there more cubes than yellow things?

• LSTM sequence-to-sequence model
• The resulting sequence of functions is

converted to a syntax tree with prefix traversal
• If the sequence is too short, we pad the

sequence with Scene constants
• If the sequence is too long, unused functions

are discarded



Execution engine
Are there more cubes than yellow things?

• Scene module takes visual features as input with
CNN

Syntax tree • The final feature map is flattened and passed into a
multilayer perception classifier



Execution engine
Are there more cubes than yellow things?

• Unary module

Syntax tree
• Binary module



Execution engine



Training

• Given VQA dataset containing (x,q,z,a) tuples with ground truth z
• Use pairs (q,z) of questions and corresponding programs to train the

program generator
• Use triplets (x,z,a) of the image, program, and answer to train the

execution engine with backpropagation to compute the gradients

Separate training with ground-truth programs

Joint training without ground-truth programs
• Use REINFORCE to estimate gradients on the outputs of the program

generator.
• The reward for each of its outputs is the negative zero-one loss of the 

execution engine, with a moving-average baseline. 



Training

Program generator
training with a small set
of ground-truth programs

Execution engine training with
predicted programs based on
the fixed program generator

REIN
FO

RCE

Semi-supervised learning



Training



Experiments
Generalizing to new attribute combinations



Experiments
Generalizing to new attribute combinations
• Top 1st column :
Train on A and test on A
• Top 2nd column:
Train on A and test on B
• Top 3rd column:
Train A and finetune on B and test on A
• Top 4th column:
Train A and finetune on B and test on B
• Bottom Figure 1:
Finetune on B and test on B with overall
questions
• Bottom Figure 2:
Finetune on B and test on B with color-query
• Bottom Figure3:
Finetune on B and test on B with shape-query



Experiments
Generalizing to new type of questions

• Able to generalize to questions with 
program structures without observing 
associated ground-truth programs. 



Experiments
Human-composed questions



Future work

• How to add new modules by automatically identifying and learning
without supervision program?
i.e. “What color is the object with a unique shape?”
solution: a Turing-complete set of modules

• Control-flow operators could be incorporated into the framework
• Learning programs with limited supervision



Thanks!


