
Guiding Interaction Behaviors for Multi-modal Grounded Language Learning Jesse Thomason, Jivko Sinapov & Raymond J. Mooney

Presented by Siliang Lu

Multi-modal grounded language learning

Modalities: Audio, Haptics, visual colors and shapes

Behaviors: look, drop, grasp, hold, lift, lower, press, push

Classification

Weighting scheme:

- Only validation confidence (κ , Cohen's kappa agreements) with human labels using leave-one-out cross-validation
- Confidence and behavior annotations
- Confidence and modality annotations
- Confidence and word similarity

Consideration of only validation confidence

Method:

 SVM using the feature space for each sensorimotor context (a combination of a behavior and sensory modality)

Behaviors	Modalities
look	color, fpfh
drop, grasp, hold, lift	
lower, press, push	audio, haptics

Sensorimotor context

Consideration of only validation confidence

Decision $d(p, o) \in [-1, 1]$ for predicate p and object o is defined as:

$$d(p,o) = \sum_{c \in C} \kappa_{p,c} G_{p,c}(o) \ge 0$$

 κ : Cohen's kappa agreement where the higher value indicates larger influence. *i.e.* examples for "red" in "look/color" space is weighed higher than in "drop/audio" space

 $G_{p,c}$: a supervised grounding classifier (i.e. SVM with linear kernel) trained on labeled object, which returns $\{-1,1\}$

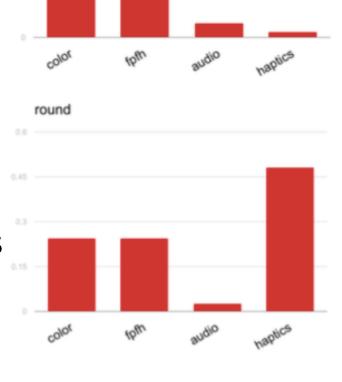
Confidence and behavior annotations

Interaction behavior annotations:

- Manual labelling by asking which exploratory behaviors annotators would engage in.
- Among 14 annotators, 8 of them with higher average kappa agreement than 0.4 were chosen.
- Induction of a distribution over behaviors $b \in B$
- A_{p,C_b}^B : Proportion of annotators who marked behavior b relevant for understanding predicate p

Confidence and behavior annotations

$$d(p,o) = \sum_{c \in C} A_{p,c_b}^B \kappa_{p,c} G_{p,c}(o) \ge 0$$


 A_{p,C_b}^B : Proportion of annotators who marked behavior b relevant for understanding predicate p

Confidence and multi-modality annotations

$$d(p,o) = \sum_{c \in C} A_{p,C_m}^M \kappa_{p,c} G_{p,c}(o) \ge 0$$

 A_{p,C_b}^{M} *: Proportion of the modality exclusivity norm marking behavior b relevant for understanding predicate p, which gathered from past work

Modalities: auditory, haptic, visual color and visual shapes

^{*} When A_{p,C_m}^M is not in the past work, a uniform 1/|M| is used.

Sharing confidence between related predicates

 Calculating cosine distance in word embedding space by using Word2Vec

For every pair of predicates $p,q \in P$ with word embedding vectors v_p, v_q , the similarity can be calculated as:

$$w(p,q) = \frac{1}{2} (1 + \cos(v_p, v_q)) \in [0,1]$$

Sharing confidence between related predicates

$$d(p,o) = \sum_{c \in C} (|P|^{-1} \sum_{q \in P} w(p,q) \, \kappa_{q,c}) G_{p,c}(o) \ge 0$$

i.e. if kappa of "thin, grasp/haptic" is high for the predicate "narrow", we should trust grasp/haptic sensorimotor context

Results

	Predicted class		
Actual Class		Class = Yes	Class = No
	Class = Yes	True Positive	False Negative
	Class = No	False Positive	True Negative

Precision =
$$\frac{TP}{TP+FP}$$

$$Recall = \frac{TP}{TP + FN}$$

F1-measurement
$$\frac{2}{F1} = \frac{1}{Precision} + \frac{1}{Recall}$$

Results

- Adding behavior annotations or modality annotations improves performance over using kappa alone
- Sharing kappa information improves recall at the cost of precision
 - Trade-off due to real world "noise" in specific domains.
 - *i.e.* "water" correlated with object weights

	р	r	f1
mc	.282	.355	.311
κ	.406	.460	.422
$\mathbf{B} + \kappa$.489	.489	.465
$\mathbf{M} + \kappa$.414	.466	.430
$\mathbf{W} + \kappa$.373	.474	.412

Future work

- Apply behavior annotations in an embodied dialog agent
- Explore other methods of sharing information between predicates such as using a maximally similar neighbor word
 - i.e. the best neighbor of "narrow" is "thin"

Thanks!