Mapping instructions and visual observations to actions with reinforcement learning

Dipendra Misra, John Langford, and Yoav Artzi

Task

Features:

- One single model
- Limited data

Task

• Training inputs:

$$\{(x^i, s_1^i, e^i\}_{i=1}^N$$

- x^i is an instruction is a sequence $\langle x_1, x_2, ..., x_n \rangle$ where x_i is a token
- s_1^i is a start state
- e^i is an execution demonstration of x starting at s1, which is an m-length sequence $<(s_1,a_1), ...(s_m, a_m)>$, where $s_j \in S, a_j \in A$ and $a_m = STOP$

Task

• Testing inputs:

$$\{(x^i, s_1^i, s_g^i)_{i=1}^M\}_{i=1}^M$$

- x^i is an instruction is a sequence $\langle x_1, x_2, ..., x_n \rangle$ where x_i is a token
- s_1^i is a start state
- s_{g}^{i} is a goal state

Architecture

Actions

Action is decomposed into direction a^{D} and block a^{B} . We compute the feed forward network:

$$\mathbf{h}^{1} = \max(\mathbf{W}^{(1)}\mathbf{\tilde{s}}_{j} + \mathbf{b}^{(1)}, \mathbf{0})$$

$$\mathbf{h}^{D} = \mathbf{W}^{(D)}\mathbf{h}^{1} + \mathbf{b}^{(D)}$$

$$\mathbf{h}^{B} = \mathbf{W}^{(B)}\mathbf{h}^{1} + \mathbf{b}^{(B)},$$

$$P(a_j^D = d \mid \bar{x}, s_j, a_{j-1}) \propto \exp(\mathbf{h}_d^D)$$
$$P(a_j^B = b \mid \bar{x}, s_j, a_{j-1}) \propto \exp(\mathbf{h}_b^B) .$$

$$P(a|x, s, a_{j-1}) = P(a_j^D = d|x, s, a_{j-1}) * P(a_j^B = d|x, s, a_{j-1})$$

Reward function

The final shaped reward is the sum of reward shaping and the problem reward

$$R^{(i)}(s,a) = \begin{cases} 1.0 & \text{if } s = s_{m^{(i)}} \text{ and } a = \text{STOP} \\ -1.0 & s \neq s_{m^{(i)}} \text{ and } a = \text{STOP} \\ -1.0 & a \text{ fails to execute} \\ -\delta & \text{else} \end{cases}$$

where $m^{(i)}$ is the length of $\bar{e}^{(i)}$.

,

Reward shaping:

- Distance-based shaping (F_1)
- Trajectory-based shaping(F₂)

Reward shaping

.

• Distance-based shaping (if the agent moved closer to the goal state)

$$F_1^{(i)}(s_j,a_j,s_{j+1})=\phi_1^{(i)}(s_{j+1})-\phi_1^{(i)}(s_j)$$
 .

The potential ϕ_1^i is proportional to the negative distance from the goal state:

$$\phi_1^{(i)}(s) = -\eta \|s - s_g^{(i)}\|$$

Trajectory-based shaping (considering the previous state and action)

$$F_2^{(i)}(s_{j-1},a_{j-1},s_j,a_j)=\phi_2^{(i)}(s_j,a_j)-\phi_2^{(i)}(s_{j-1},a_{j-1})$$

Encourage the agent to take action close to the execution demonstration state

Policy gradient objective

Contextual Bandit

Suitable for the few-sample regime common in natural language problem

Policy is learned from agent context rather than the world state

Immediate reward $\nabla_{\theta} \mathcal{J} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[\nabla_{\theta} \log \pi(\tilde{s}, a) R^{(i)}(s, a)]$

Policy gradient objective

Input: a differentiable policy parameterization $\pi(a|s, \theta), \forall a \in A, s \in S, \theta \in \mathbb{R}^n$ Initialize policy weights θ Repeat forever: Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \theta)$ For each step of the episode $t = 0, \dots, T-1$: $G_t \leftarrow$ return from step t $\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_{\theta} \log \pi(A_t|S_t, \theta)$ Total reward for an episode

Policy gradient objective

• Entropy Penalty

To avoid falling into negative reward and rarely completing the task in the early training

Algorithm

Algorithm 1 Policy gradient learning **Input:** Training set $\{(\bar{x}^{(i)}, s_1^{(i)}, \bar{e}^{(i)})\}_{i=1}^N$, learning rate μ , epochs T, horizon J, and entropy regularization term λ . **Definitions:** IMG(s) is a camera sensor that reports an RGB image of state s. π is a probabilistic neural network policy parameterized by θ , as described in Section 4. EXECUTE(s, a) executes the action a at the state s, and returns the new state. $R^{(i)}$ is the reward function for example *i*. ADAM(Δ) applies a per-feature learning rate to the gradient Δ (Kingma and Ba, 2014). **Output:** Policy parameters θ . 1: » Iterate over the training data. for t = 1 to T, i = 1 to N do 3: $I_{1-K},\ldots,I_0=\vec{0}$ Initialization $a_0 = \text{NONE}, s_1 = s_1^{(i)}$ 5: i = 1» Rollout up to episode limit. 6: 7: while $j \leq J$ and $a_j \neq$ STOP do 8: » Observe world and construct agent contex 9: $I_i = \text{IMG}(s_i)$ Construct state $\tilde{s}_j = (\bar{x}^{(i)}, I_j, I_{j-1}, \dots, I_{j-K}, a^a_{j-1})$ 10: context » Sample an action from the policy. 11: 12: $a_j \sim \pi(\tilde{s}_j, a)$ Sample an action 13: $s_{j+1} = \text{EXECUTE}(s_j, a_j)$ 14: » Compute the approximate gradient. $\Delta_j \leftarrow \nabla_{\theta} \log \pi(\tilde{s}_j, a_j) R^{(i)}(s_j, a_j)$ 15: $+\lambda \nabla_{\theta} H(\pi(\tilde{s}_j,\cdot))$ Compute policy gradient 16: i + = 1 $\theta \leftarrow \theta + \mu \text{ADAM}(\frac{1}{j} \sum_{j'=1}^{j} \Delta_{j'})$ 17: 18. return A

Results

Distance error:

The sum of Euclidean distances for each block between its position at the end of the execution and in the gold goal state

F1 is better than F2 [/]

Algorithm	Distance Error		Min. Distance		
	Mean	Med.	Mean	Med.]
Demonstrations	0.35	0.30	0.35	0.30]
Baselines]
STOP	5.95	5.71	5.95	5.71	1
RANDOM	15.3	15.70	5.92	5.70	
SUPERVISED	4.65	4.45	3.72	3.26	
REINFORCE	5.57	5.29	4.50	4.25	💶 🔤 Re
DQN	6.04	5.78	5.63	5.49	lir
Our Approach	3.60	3.09	2.72	2.21	1
w/o Sup. Init	3.78	3.13	2.79	2.21	
w/o Prev. Action	3.95	3.44	3.20	2.56	<u> </u>
w/o F_1	4.33	3.74	3.29	2.64	
w/o F_2	3.74	3.11	3.13	2.49	
w/ Distance	8.36	7.82	5.91	5.70	
Reward					
Ensembles]
SUPERVISED	4.64	4.27	3.69	3.22	1 /
REINFORCE	5.28	5.23	4.75	4.67	
DQN	5.85	5.59	5.60	5.46	
Our Approach	3.59	3.03	2.63	2.15	
DQN Our Approach	5.28 5.85 3.59	5.23 5.59 3.03	4.75 5.60 2.63	4.67 5.46 2.15	•

Reflects problem with limited data

Table 2: Mean and median (Med.) development results.

Algorithm	Distanc	e Error	Min. Distance						
Algorithm	Mean	Med.	Mean	Med.					
Demonstrations	0.37	0.31	0.37	0.31					
STOP	6.23	6.12	6.23	6.12					
RANDOM	15.11	15.35	6.21	6.09					
Ensembles									
SUPERVISED	4.95	4.53	3.82	3.33					
REINFORCE	5.69	5.57	5.11	4.99					
DQN	6.15	5.97	5.86	5.77					
Our Approach	3.78	3.14	2.83	2.07					

Table 3: Mean and median (Med.) test results.