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Move the Toyota block around the pile and place it just to

the right of the SRI block
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Task

* Training inputs:

{(x',s1, €'}l

« x'is aninstruction is a sequence < Xy, X,, ... X, > Where Xx; is a token
e si is a start state

« elis an execution demonstration of x starting at s1, which is an m-length
sequence <(sy,a,), ...(s, a,)>, wheres; € 5,a; € Aand a,, = STOP



Task

* Testing inputs:

i
{(x", s1,8g}i=1

e x'is aninstruction is a sequence < x4, X5, ... X, > Where x; is a token
* s7 is a start state
* S, is a goal state



Architecture
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Actions

Action is decomposed into direction a”and block a®. We compute the feed

forward network:
h' = max( ‘s, +‘0)

hl-) - ]hl
h = W%n' +,

P(a) =d|%,s;,a5-1) o« exp(hy)

P(aj =b|Z,s5,a;.1) o exp(hy) .

P(alx,s,a;_1) = P(ajp =d|x,s,a;_1) * P(a]B =d|x,s,a;_1)



Reward function

The final shaped reward is the sum of reward shaping and the problem reward

- - A

(1.0  ifs=ws, ) and @ = STOP
—1.0 s#8_( and a = STOP
—1.0 a fails to execute

| \ -0 else |

where m!?) is the length of &(%).

R (s,a) = ¢

Reward shaping:

* Distance-based shaping (F;)
* Trajectory-based shaping(F,)



Reward shaping

* Distance-based shaping (if the agent moved closer to the goal state)

1[2) . ‘ - — (l) - . [ll >
Fy7(85,a5,8j41) = @77 (8541) — &1 7(85)
The potential ¢} is proportional to the negative distance from the goal state:
(1) (o) — (2)
¢y (8) = —nlls—sg’|
* Trajectory-based shaping (considering the previous state and action)

A

(2)

qu)(sj 1,Q; 19819(1))_@:}”(819“})— 2 (SJ' 1y @j 1)

Encourage the agent to take action close to the execution demonstration state



Policy gradient objective

 Contextual Bandit

Suitable for the few-sample regime common in natural language problem

Policy is learned from agent context rather than the world state

Immediate reward

N
1 . .
VoIJ = N g 1 E[Vg log 7r(s,a



Policy gradient objective

Immediate reward

 Contextual Bandit
N
VoJ = %ZE[W log 7r(§,a
=1

0 + 0 + pADAM(; Zﬁ,_l A }«— Average for this episode

Input: a differentiable policy parameterization 7(a|s,8),Va € A,s € 8,0 € R"
Initialize policy weights @
Repeat forever:

Generate an episode Sy, Ag, R1,...,S7-1,A7r_1, Ry, following =(-|-, 8)

For each step of the episode t =0,...,T — 1:

Gi + return from step ¢
0« 0+ .@v log 7(As|S:, 6)

Total reward for an episode




Policy gradient objective

* Entropy Penalty

To avoid falling into negative reward and rarely completing the task in the
early training

VoJ =

N
1 &,

N Z EVyplognw(s,a)R" " (s,a)
=1

entropy



Algorithm

Algorithm 1 Policy gradient learning

Input: Training set {(z(*),s'”, &)}, learning rate p,

epochs 7', horizon J, and entropy regularization term A.

Definitions: IMG(s) is a camera sensor that reports an RGB

image of state s. w is a probabilistic neural network
policy parameterized by 6, as described in Section 4.
EXECUTE(s, a) executes the action a at the state s, and

returns the new state. R'" is the reward function for
example i. ADAM(A) applies a per-feature learning rate
to the gradient A (Kingma and Ba, 2014).

Output: Policy parameters 6.
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» Iterate over the training data.
[fort=T11w0T,7=1to N do
Lok, ..,Io =0 ' ere 1 .
ao = NONE, 81 = s'" <— Initialization
J=1

oLk e

» Rollout up to episode limit.
while j < J and a; # STOP do

»-Observe worid and construct agent context.

Ij — IMG(.?J')

- - ‘ Construct state
8i=(z(')91131i'ls°'°31)"K’a1"—~l \

» Sample an action from the policy. context

a;j ~ m(8;,a)
8j+1 = EXECUTE(s;, a;)
» Compute the approximate gradient.

“—— Sample an action

Aj +Vy lOg”(gjyaj)R(i)(staJ)

AVeH(n(8i,1) | compute policy gradient

i+=1 |
0 « 0+ pADAM(; 327, Ajr)
rotiirn A




Distance Error = Min. Distance
Algiitm Mean | Med.  Mean | Med.
| Demonstrations | 035 | 030 ' 035 ' 030 |

Baseh
R e S u | t S _s::p = 5.95 571 5.95 571

RANDOM 153 15.70 592 5.70
SUPERVISED 4.65 445 3.72 3.26
Distance error: REINFORCE 557 @ 529 450 425 . Reflects problem with
The sum of Euclidean distances for DON | 604 | 5.78 | 563 | 3549 limited data
. . Our Approach 3.60 3.09 2.72 2.21
each block between its position at w/o Sup. Init 378 | 313 | 279 @ 221
: : | woPrev Action | 305 | 344 320 286
the end of the execution and in the wo F, 433 | 378 | 329 | 264
gold goal state wio F, 374 | 311 | 313 | 249
w7 Distance 836 | 782 591 570
) Reward
F1is better than F2 “Ensembles
[ SUPERVISED 4.64 427 369 | 3122
REINFORCE 528 | 523 | 475 | 4.67
DQN 585 | 559 560 @546
Our Approach 3.59 3.03 263 215

Table 2: Mean and median (Med.) development results.
Distance Error  Min. Distance
Algorithm Mean | Med. | Mean | Med.
[ Demonstrations | 037 | 0.31 | 0.37 | 0.31 |

Stop 6.23 6.12 6.23 6.12
RANDOM 15.11 15.35 6.21 6.09
Ensembles

SUPERVISED 495 453 382 333
REINFORCE 5.69 5.57 5.11 499
DQN 6.15 597 5.86 5.77
Our Approach 378 314 2.83 2.07

Table 3: Mean and median (Med.) test results.



