# Environment-Driven Lexicon Induction for High-Level Instructions

By Dipendra K. Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena

Presentation by Rishub Jain

#### **Problem Statement**

• Given an environment and text, predict a set of actions the text dictates

**Text:** "Turn on xbox. Take Far Cry Game CD and put in xbox. Throw out beer, coke and sketchy stuff in bowl...."

Action Sequence:  $moveto(xbox_1)$ ;  $grasp(xbox_1)$ ;  $press(power_button_1)$ ;  $moveto(cd_2)$ ;  $grasp(cd_2)$ ;  $insert(cd_2, xbox_1) \cdots$ 



**Environment:** 

#### **Previous work**

- Previous work was always missing one of the following:
  - Able to correctly handle new actions in the test set
  - Able to handle complex actions (in a reasonable amount of time)
    - Microwaving a cup requires 10-15 sub-actions

• This work tries to do all of these things

### Environment

- Represented as a graph
- Each vertex is an object, and has:
  - Instance ID (e.g. xbox<sub>1</sub>)
  - Category name (e.g. xbox)
  - Set of properties (e.g. graspable)
  - Set of binary states (e.g. power-off)
- Each edge is a relationship between two objects
  - five basic spatial relations: near, grasping, on, in and below



**Environment:** 

### Actions

- Each action name in the sequence is one of 15 values (grasp, moveto, wait, etc.)
- Each action can contain an object (xbox<sub>1</sub>), a spatial relation (keep(ramen<sub>2</sub>, in, kettle<sub>1</sub>)), or a postcondition (wait(state(kettle<sub>1</sub>, boiling)))

Action Sequence:  $moveto(xbox_1)$ ;  $grasp(xbox_1)$ ;  $press(power_button_1)$ ;  $moveto(cd_2)$ ;  $grasp(cd_2)$ ;  $insert(cd_2, xbox_1) \cdots$ 

### Postconditions

- Instead of trying to predict actions, we predict post conditions, and infer actions
- Postcondition: A conjunction of atoms
- An atom can be:
  - A spatial relation (on(book<sub>9</sub>, shelf<sub>3</sub>))
  - A state and value (state(kettle<sub>1</sub>, boiling))
- Represented as a logical form:
  - Each logic form has a set of parameterized post conditions, and a mapping from variables to objects

Logical Form  $z = (\ell, \xi)$   $\ell: put \Rightarrow [\lambda \vec{v}. state(v_1, has-cd) \land near(v_1, v_2), \xi']$   $\xi: \{v_1 \rightarrow xbox_1; v_2 \rightarrow robot_1\}$  $\xi': old mapping$ 

## Why use postconditions?

- They generalize better
  - To fill a cup with water, postcondition = "cup is full", while action = "fill cup using tap". During testing, you may fill the cup using a bucket
- Much less number of atoms to represent complex task
  - Microwaving requires 10-15 actions, but just 2 atoms in its postcondition:  $in(cup_2, microwave_1) \land state(microwave, is-on)$

# Approach



**Action Sequence:**  $moveto(xbox_1)$ ;  $grasp(xbox_1)$ ;  $press(power_button_1)$ ;  $moveto(cd_2)$ ;  $grasp(cd_2)$ ;  $insert(cd_2, xbox_1) \cdots$ 

Figure 2: Graphical model overview: we first deterministically shallow parse the text x into a control flow graph consisting of shallow structures  $\{c_i\}$ . Given an initial environment  $e_1$ , our semantic parsing model maps these frame nodes to logical forms  $\{z_i\}$  representing the postconditions. From this, a planner and simulator generate the action sequences  $\{a_i\}$  and resulting environments  $\{e_i\}$ .

# **Shallow Parsing**

- Deterministically parse text into "Control Flow Graph"
- Frame node:
  - Verb
  - Object descriptions
  - Spatial relationships
- Conditional node:
  - Branching: two children separated by condition
  - Temporal: "until" statement
- Based on manual rules and the Stanford parser

Text: "If any of the pots have food in them, then dump them out in the garbage can and then put them on the sink else keep it on the table."



# **Shallow Parsing**

 Given environment, resolve all conditional branches, and return a sequence of frame nodes





#### **Semantic Parsing Model**

Given a sequence of frame nodes c<sub>1:k</sub> and initial environment e<sub>1</sub>, define a joint distribution over all logical forms z<sub>1:k</sub> using a conditional random field (CRF)

•  $e_{i+1} = simulator(e_i, planner(e_i, z_i))$ 

$$p_{\theta}(z_{1:k} \mid c_{1:k}, e_1) \propto \exp\left(\sum_{i=1}^k \phi(c_i, z_{i-1}, z_i, e_i) \cdot \theta\right)$$



## Semantic Parsing Model - Feature Vector

- Given object descriptions (Far Cry Game CD, xbox) determine probability of objects they are referring to
  - Not just a text matching problem
    - For example, multiple CD's
    - Get me a tank of water" requires you to use a "cup" object
  - Uses a combination of rules to determine this (Wordnet similarity, category matching, etc.)
- In z<sub>i</sub> (grasping(robot, couch)), given the training distribution of postconditions, determine probability that it is reasonable
- Other less important features involving transition probabilities between  $z_{i-1}$  and  $z_i$ , etc.

 $\phi(c_i, z_{i-1}, z_i, e_i)$ 

## Lexicon Induction

- Remember: Logical form has parameterized postconditions and object mapping
- To get parametrized mapping, if the verb appears in the training set, you can just find the most likely mapping with:

Logical Form  $z = (\ell, \xi)$   $\ell: put \Rightarrow [\lambda \vec{v}. state(v_1, has-cd) \land near(v_1, v_2), \xi']$   $\xi: \{v_1 \rightarrow xbox_1; v_2 \rightarrow robot_1\}$  $\xi': old mapping$ 

$$\xi_i = \arg \max_{\xi'} \phi(c_i, z_{i-1}, (\ell_i, \xi'), e_i)$$

• Becomes an approximately quadratic programming problem

# **Environment-Driven Lexicon Induction**

- If verb does not appear in training set, you cannot do regular lexicon induction
- (Using the approach from the Semantic Parsing Model), for each object description, select only the object with the highest probability that the description is referring to it
- To assign the objects to the variables, my guess: they do a beam search on the combinations of object assignments, since there are usually 1-4 variables



#### **Inference and Parameter Estimation**

• Train CRF to find the parameters  $\boldsymbol{\theta}$ 

 $\tilde{p}_{\theta}(z_i \mid z_{i-1}, c_i, e_i) \propto \exp(\phi(c_i, z_{i-1}, z_i, e_i)^{\top} \theta).$ 

Starting with the k most likely values for z<sub>1</sub>, conduct a beam-search to find the resulting z<sub>1:k</sub>, and then deterministically find a<sub>1:k</sub> using the deterministic planner: a<sub>i</sub> = planner(e<sub>i</sub>, z<sub>i</sub>)

#### Dataset

• Created their own dataset by crowd-sourcing

- 20 3D environments had 40 objects on average
- 10 total high-level objectives (clean the room, etc.), 5 per scenario

- Asked one group of users to write the Text describing what to do
- Another group wrote the actual actions of the robot
- Total of 500 examples (469 after filtering)
- 148 different verbs, an average of 48.7 words per text, and an average of 21.5 actions per action sequence

# Evaluation

- 2 metrics:
  - IED: Edit distance from ground-truth action sequence
  - END: Jaccard index of sets A (set of atoms whose truth values changed after simulating entire action sequence) and B (ground truth)

| Algorithm                                    | IED END   |
|----------------------------------------------|-----------|
| Chance                                       | 0.3 0.5   |
| Manually Defined Templates                   | 2.5 1.8   |
| UBL- Best Parse (Kwiatkowski et al., 2010)   | 5.3 6.9   |
| VEIL (Misra et al., 2014)                    | 14.8 20.7 |
| Model with only train-time lexicon induction | 20.8 26.8 |
| Model with only test-time lexicon induction  | 21.9 25.9 |
| Full Model                                   | 22.3 28.8 |

## Evaluation

- 2 metrics:
  - IED: Edit distance from ground-truth action sequence
  - END: Jaccard index of sets A (set of atoms whose truth values changed after simulating entire action sequence) and B (ground truth)

Table 2: New verbs and concepts induced at test time (Section 7).

| Text                                    | Postcondition represented by the learned logical form                                                                                          | # Log. forms explored |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                         | $"\texttt{state}(\texttt{cup}_2,\texttt{ice-cream}_1) \land \texttt{state}(\texttt{cup}_2,\texttt{vanilla})$                                   | 15                    |
| " <u>distribute</u> among the couches"  | $\wedge_{j \in \{1,3\}} \texttt{on}(\texttt{pillow}_j, \texttt{loveseat}_1) \land \texttt{on}(\texttt{pillow}_{i+1}, \texttt{armchair}_{i+1})$ | ) 386                 |
| " <u>boil</u> it on the stove"          | $\texttt{state}(\texttt{stove}, \texttt{stovefire1}) \land \texttt{state}(\texttt{kettle}, \texttt{water})$                                    | 109                   |
| " <u>change</u> the channel to a movie" | $\texttt{'state}(\texttt{tv}_1,\texttt{channel4}) \land \texttt{on}(\texttt{book}_1,\texttt{loveseat}_1)$                                      | 98                    |

### Appendix: Mapping Object Descriptions

Given an object description  $\omega$  and a set of physical objects  $\{o_j\}_{j=1}^m$ ; we want to find the correlation  $\rho(\omega, o_j) \in [0, 1]$  of how well does the description  $\omega$  describes the object  $o_j$ . When the description is not a pronoun, we take the following approach. We initialize  $\forall_j \ \rho(\omega, o_j) = 0$  and then try the following rules in the given order, stopping after the first match:

- category matching: if there exists a set of objects {o'<sub>j</sub>} containing part of the description in its name then we define ∀<sub>j</sub>ρ(ω, o'<sub>j</sub>) = 1.
- containment (metonymy): for every object o<sub>j</sub>; if the main noun in ω matches the state-name of a state of o<sub>j</sub> which has value True then we define ρ(ω, o<sub>j</sub>) = 1.

- wordnet similarity: for every object  $o_j$  we find  $\rho(\omega, o_j)$  using a modified Lesk algorithm based on WordNet. If a similarity score greater than 0.85 is found then we return.
- domain specific references: We use giza-pp algorithm to learn translation probabilities between text and corresponding action sequences, using the training data. This gives us a probability table T[words, object-name] of words in text and object name in the sequence. We then initialize ρ(ω, o<sub>j</sub>) by averaging the value of T[w, o<sub>j</sub>.name] for every word w in ω.