
Environment-Driven Lexicon Induction 
for High-Level Instructions

By Dipendra K. Misra, Kejia Tao, Percy Liang, and 
Ashutosh Saxena

Presentation by Rishub Jain



Problem Statement
● Given an environment and text, predict a set of actions the text dictates



Previous work
● Previous work was always missing one of the following:

○ Able to correctly handle new actions in the test set
○ Able to handle complex actions (in a reasonable amount of time)

■ Microwaving a cup requires 10-15 sub-actions

● This work tries to do all of these things



Environment
● Represented as a graph
● Each vertex is an object, and has:

○ Instance ID (e.g. xbox1)
○ Category name (e.g. xbox)
○ Set of properties (e.g. graspable)
○ Set of binary states (e.g. power-off)

● Each edge is a relationship between two 
objects

○ five basic spatial relations: near, grasping, on, in 
and below



Actions
● Each action name in the sequence is one of 15 values (grasp, moveto, 

wait, etc.)
● Each action can contain an object (xbox1), a spatial relation (keep(ramen2, 

in, kettle1)), or a postcondition (wait(state(kettle1, boiling)))



Postconditions
● Instead of trying to predict actions, we 

predict post conditions, and infer actions
● Postcondition: A conjunction of atoms
● An atom can be:

○ A spatial relation (on(book9, shelf3))
○ A state and value (state(kettle1, boiling))

● Represented as a logical form:
○ Each logic form has a set of 

parameterized post conditions, and a 
mapping from variables to objects



Why use postconditions?
● They generalize better

○ To fill a cup with water, postcondition = “cup is full”, while action = “fill cup using 
tap”. During testing, you may fill the cup using a bucket

● Much less number of atoms to represent complex task
○ Microwaving requires 10-15 actions, but just 2 atoms in its postcondition: in(cup2, 

microwave1) ∧ state(microwave, is-on)



Approach



● Deterministically parse text into 
“Control Flow Graph”

● Frame node:
○ Verb
○ Object descriptions
○ Spatial relationships

● Conditional node:
○ Branching: two children separated by 

condition
○ Temporal: “until” statement

● Based on manual rules and the 
Stanford parser

Shallow Parsing



● Given environment, resolve all 
conditional branches, and 
return a sequence of frame 
nodes

Shallow Parsing



● Given a sequence of frame nodes c1:k and initial environment e1, define 
a joint distribution over all logical forms z1:k using a conditional random 
field (CRF)

● ei+1= simulator(ei, planner(ei, zi))

Semantic Parsing Model



● Given object descriptions (Far Cry Game CD, xbox) 
determine probability of objects they are referring to

○ Not just a text matching problem
■ For example, multiple CD’s
■ “Get me a tank of water” requires you to use a “cup” object

○ Uses a combination of rules to determine this (Wordnet similarity, 
category matching, etc.)

● In zi (grasping(robot, couch)), given the training 
distribution of postconditions, determine probability that 
it is reasonable

● Other less important features involving transition 
probabilities between zi-1 and zi, etc.

Semantic Parsing Model - Feature Vector



● Remember: Logical form has 
parameterized postconditions and object 
mapping

● To get parametrized mapping, if the verb 
appears in the training set, you can just 
find the most likely mapping with:

● Becomes an approximately quadratic 
programming problem

Lexicon Induction



● If verb does not appear in training set, you cannot do regular lexicon 
induction

● (Using the approach from the Semantic Parsing Model), for each object 
description, select only the object with the highest probability that the 
description is referring to it

● To assign the objects to the variables, my guess: they do a beam search on 
the combinations of object assignments, since there are usually 1-4 
variables

Environment-Driven Lexicon Induction



● Train CRF to find the parameters θ

● Starting with the k most likely values for z1, conduct a beam-search to 
find the resulting z1:k, and then deterministically find a1:k using the 
deterministic planner: ai = planner(ei, zi)

Inference and Parameter Estimation



● Created their own dataset by crowd-sourcing

● 20 3D environments had 40 objects on average
● 10 total high-level objectives (clean the room, etc.), 5 per scenario

● Asked one group of users to write the Text describing what to do
● Another group wrote the actual actions of the robot
● Total of 500 examples (469 after filtering)
● 148 different verbs, an average of 48.7 words per text, and an average 

of 21.5 actions per action sequence

Dataset



● 2 metrics:
○ IED: Edit distance from ground-truth action sequence
○ END: Jaccard index of sets A (set of atoms whose truth values changed after 

simulating entire action sequence) and B (ground truth)

Evaluation



● 2 metrics:
○ IED: Edit distance from ground-truth action sequence
○ END: Jaccard index of sets A (set of atoms whose truth values changed after 

simulating entire action sequence) and B (ground truth)

Evaluation



Appendix: Mapping Object Descriptions


