Environment-Driven Lexicon Induction for High-Level Instructions

By Dipendra K. Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena

Presentation by Rishub Jain
Problem Statement

- Given an environment and text, predict a set of actions the text dictates

Text: "Turn on xbox. Take Far Cry Game CD and put in xbox. Throw out beer, coke and sketchy stuff in bowl. …"

Action Sequence: moveto($xbox_1$); grasp($xbox_1$); press(power_button$_1$); moveto(cd_2); grasp(cd_2); insert(cd_2, $xbox_1$) …
Previous work

● Previous work was always missing one of the following:
 ○ Able to correctly handle new actions in the test set
 ○ Able to handle complex actions (in a reasonable amount of time)
 ■ Microwaving a cup requires 10-15 sub-actions

● This work tries to do all of these things
Environment

- Represented as a graph
- Each vertex is an object, and has:
 - Instance ID (e.g. `xbox_1`)
 - Category name (e.g. `xbox`)
 - Set of properties (e.g. `graspable`)
 - Set of binary states (e.g. `power-off`)
- Each edge is a relationship between two objects
 - five basic spatial relations: near, grasping, on, in and below
Actions

- Each action name in the sequence is one of 15 values (grasp, moveto, wait, etc.)
- Each action can contain an object ($xbox_1$), a spatial relation ($\text{keep}(\text{ramen}_2, \text{in}, \text{kettle}_1$)), or a postcondition ($\text{wait}(\text{state}(\text{kettle}_1, \text{boiling}))$)

Action Sequence: $\text{moveto}(xbox_1); \text{grasp}(xbox_1); \text{press}(\text{power_button}_1); \text{moveto}(cd_2); \text{grasp}(cd_2); \text{insert}(cd_2, xbox_1) \ldots$
Postconditions

- Instead of trying to predict actions, we predict post conditions, and infer actions
- Postcondition: A conjunction of atoms
- An atom can be:
 - A spatial relation (on(book₉, shelf₃))
 - A state and value (state(kettle₁, boiling))
- Represented as a logical form:
 - Each logic form has a set of parameterized post conditions, and a mapping from variables to objects

Logical Form

\[
\ell, \xi = (\ell, \xi) \\
\ell: put \Rightarrow [\lambda \vec{v}. \text{state}(v₁, \text{has-cd}) \land \text{near}(v₁, v₂), \xi'] \\
\xi: \{v₁ \rightarrow \text{xbox}_1; v₂ \rightarrow \text{robot}_1\} \\
\xi': \text{old mapping}
\]
Why use postconditions?

● They generalize better
 ○ To fill a cup with water, postcondition = “cup is full”, while action = “fill cup using tap”. During testing, you may fill the cup using a bucket

● Much less number of atoms to represent complex task
 ○ Microwaving requires 10-15 actions, but just 2 atoms in its postcondition: $\text{in}(\text{cup}_2, \text{microwave}_1) \land \text{state(microwave, is-on)}$
Approach

Figure 2: Graphical model overview: we first deterministically shallow parse the text x into a control flow graph consisting of shallow structures $\{c_i\}$. Given an initial environment e_1, our semantic parsing model maps these frame nodes to logical forms $\{z_i\}$ representing the postconditions. From this, a planner and simulator generate the action sequences $\{a_i\}$ and resulting environments $\{e_i\}$.
Shallow Parsing

- Deterministically parse text into “Control Flow Graph”
- Frame node:
 - Verb
 - Object descriptions
 - Spatial relationships
- Conditional node:
 - Branching: two children separated by condition
 - Temporal: “until” statement
- Based on manual rules and the Stanford parser

Text: “If any of the pots have food in them, then dump them out in the garbage can and then put them on the sink else keep it on the table.”

Diagram:

- Frame node: $\langle v, \omega, r \rangle$
 - v: verb
 - ω: set of object description ω
 - r: relationship between descriptions

- Conditional node (expr)
 - v: keep
 - ω: [it, the table]
 - r: {on: it \rightarrow the table}

- Frame node: $\langle v, \omega, r \rangle$
 - v: put
 - ω: [them, the sink]
 - r: {on: them \rightarrow the sink}
Shallow Parsing

- Given environment, resolve all conditional branches, and return a sequence of frame nodes

\[
\begin{align*}
\nu &: \text{dump} \\
\omega &: [\text{them}, \text{the garbage can}] \\
r &: \{\text{in: them } \rightarrow \text{ garbage can}\} \\
\end{align*}
\]

\[
\begin{align*}
\nu &: \text{put} \\
\omega &: [\text{them}, \text{the sink}] \\
r &: \{\text{on: them } \rightarrow \text{ the sink}\} \\
\end{align*}
\]
Semantic Parsing Model

- Given a sequence of frame nodes $c_{1:k}$ and initial environment e_1, define a joint distribution over all logical forms $z_{1:k}$ using a conditional random field (CRF)
- $e_{i+1} = \text{simulator}(e_i, \text{planner}(e_i, z_i))$

\[
p_{\theta}(z_{1:k} \mid c_{1:k}, e_1) \propto \exp \left(\sum_{i=1}^{k} \phi(c_i, z_{i-1}, z_i, e_i) \cdot \theta \right)
\]
Semantic Parsing Model - Feature Vector

- Given object descriptions (Far Cry Game CD, xbox) determine probability of objects they are referring to
 - Not just a text matching problem
 - For example, multiple CD’s
 - “Get me a tank of water” requires you to use a “cup” object
 - Uses a combination of rules to determine this (Wordnet similarity, category matching, etc.)
- In z_i (grasping(robot, couch)), given the training distribution of postconditions, determine probability that it is reasonable
- Other less important features involving transition probabilities between z_{i-1} and z_i, etc.
Lexicon Induction

- Remember: Logical form has parameterized postconditions and object mapping.
- To get parametrized mapping, if the verb appears in the training set, you can just find the most likely mapping with:

\[
\xi_i = \arg \max_{\xi'} \phi(c_i, z_{i-1}, (\ell_i, \xi'), e_i)
\]

- Becomes an approximately quadratic programming problem.
Environment-Driven Lexicon Induction

- If verb does not appear in training set, you cannot do regular lexicon induction
- (Using the approach from the Semantic Parsing Model), for each object description, select only the object with the highest probability that the description is referring to it
- To assign the objects to the variables, my guess: they do a beam search on the combinations of object assignments, since there are usually 1-4 variables
Inference and Parameter Estimation

- Train CRF to find the parameters θ
 \[
 \hat{p}_\theta(z_i \mid z_{i-1}, c_i, e_i) \propto \exp(\phi(c_i, z_{i-1}, z_i, e_i)^\top \theta)
 \]

- Starting with the k most likely values for z_i, conduct a beam-search to find the resulting $z_{1:k}$, and then deterministically find $a_{1:k}$ using the deterministic planner: $a_i = \text{planner}(e_i, z_i)$
Dataset

- Created their own dataset by crowd-sourcing
- 20 3D environments had 40 objects on average
- 10 total high-level objectives (clean the room, etc.), 5 per scenario
- Asked one group of users to write the Text describing what to do
- Another group wrote the actual actions of the robot
- Total of 500 examples (469 after filtering)
- 148 different verbs, an average of 48.7 words per text, and an average of 21.5 actions per action sequence
Evaluation

- 2 metrics:
 - IED: Edit distance from ground-truth action sequence
 - END: Jaccard index of sets A (set of atoms whose truth values changed after simulating entire action sequence) and B (ground truth)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>IED</th>
<th>END</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chance</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Manually Defined Templates</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>UBL- Best Parse (Kwiatkowski et al., 2010)</td>
<td>5.3</td>
<td>6.9</td>
</tr>
<tr>
<td>VEIL (Misra et al., 2014)</td>
<td>14.8</td>
<td>20.7</td>
</tr>
<tr>
<td>Model with only train-time lexicon induction</td>
<td>20.8</td>
<td>26.8</td>
</tr>
<tr>
<td>Model with only test-time lexicon induction</td>
<td>21.9</td>
<td>25.9</td>
</tr>
<tr>
<td>Full Model</td>
<td>22.3</td>
<td>28.8</td>
</tr>
</tbody>
</table>
Evaluation

- 2 metrics:
 - IED: Edit distance from ground-truth action sequence
 - END: Jaccard index of sets A (set of atoms whose truth values changed after simulating entire action sequence) and B (ground truth)

Table 2: New verbs and concepts induced at test time (Section 7).

<table>
<thead>
<tr>
<th>Text</th>
<th>Postcondition represented by the learned logical form</th>
<th># Log. forms explored</th>
</tr>
</thead>
<tbody>
<tr>
<td>“mix it with ice cream and syrup”</td>
<td>state(cup₂, ice-cream₁) ∧ state(cup₂, vanilla)</td>
<td>15</td>
</tr>
<tr>
<td>“distribute among the couches”</td>
<td>∧ j∈{1,3} on(pillowᵢ, loveseat₁) ∧ on(pillowᵢ₊₁, armchairᵢ₊₁)</td>
<td>386</td>
</tr>
<tr>
<td>“boil it on the stove”</td>
<td>state(stove, stovefire₁) ∧ state(kettle, water)</td>
<td>109</td>
</tr>
<tr>
<td>“change the channel to a movie”</td>
<td>state(tv₁, channel₁₄) ∧ on(book₁, loveseat₁)</td>
<td>98</td>
</tr>
</tbody>
</table>
Appendix: Mapping Object Descriptions

Given an object description ω and a set of physical objects $\{o_j\}_{j=1}^m$; we want to find the correlation $\rho(\omega, o_j) \in [0, 1]$ of how well does the description ω describes the object o_j. When the description is not a pronoun, we take the following approach. We initialize $\forall_j \rho(\omega, o_j) = 0$ and then try the following rules in the given order, stopping after the first match:

- **category matching**: if there exists a set of objects $\{o'_j\}$ containing part of the description in its name then we define $\forall_j \rho(\omega, o'_j) = 1$.

- **containment (metonymy)**: for every object o_j, if the main noun in ω matches the state-name of a state of o_j which has value $True$ then we define $\rho(\omega, o_j) = 1$.

- **wordnet similarity**: for every object o_j we find $\rho(\omega, o_j)$ using a modified Lesk algorithm based on WordNet. If a similarity score greater than 0.85 is found then we return.

- **domain specific references**: We use giza-pp algorithm to learn translation probabilities between text and corresponding action sequences, using the training data. This gives us a probability table $T[words, object-name]$ of words in text and object name in the sequence. We then initialize $\rho(\omega, o_j)$ by averaging the value of $T[w, o_j.name]$ for every word w in ω.