Learning to Interpret Natural Language Commands through Human-Robot Dialog

Jesse Thomason, Shiqi Zhang, Raymond Mooney and Peter Stone Presented by Siliang Lu

Task Develop a dialog agent for mobile robots understanding human instructions through semantic parsing

8.0. mijer in "Graningenikeren also in "Assessmentalise in	OBS mental	
Sorry I couldn't understand that. Could you reword your original		
request?	Pengin Kaparon Nowits Pipan Nowitsi Matto Laorietti Brag Darig Jaco Seagon Daren Libert Biary Mites Piper Stare Dare Stare Pagement Montes Pagement Montes	
Enter here:		

ma Create Quint P.Structures P.Structure & ---

Semantic parser

- λ calculus
- Combinatory categorical grammar (CCG)

NP: Noun phrase N: Noun

Belief state

• Three components:

- Each component is a histogram of confidences over possible assignments
- Action: walking and bringing items -> [0,1]
- Recipient -> (people, room, items) U null
- Patient -> (people, room, items) U null

Multiple meaning hypotheses:

Expression: go to the office Logical form: action(walk) ^ recipient(walk, the $(\lambda y. of fice(y))))$

Updating the Belief state

• For open-ended statement (update all hypotheses):

$$conf(c = H_{i,c}) \leftarrow conf(c = H_{i,c})\left(1 - \frac{\alpha}{k}\right) + \frac{\alpha}{k}$$

- α threadhold of confidence
- For unmentioned arguments:

$$conf(c = \overline{H_{j,c}}) \leftarrow \gamma conf(c = \overline{H_{j,c}})$$

 $\gamma-\text{decay parameter}$

Responding

Reduce to discrete state:

$$T_c = argmax_{t \in A_c}(conf(c = t))$$

 T_c - the top candidate arguments

Table 1: Representative subset of our policy π for mapping discrete states S' to actions (questions to ask the user).

S'		$\pi(S')$	
(action,patient,recipient)	Role Request	Text	Initiative
(unknown,unknown,unknown)	all	Sorry I couldn't understand that. Could you	user
		reword your original request?	
$(unknown, T_{patient}, T_{recipient})$	action	What action did you want me to take involving	system
		T_{patient} and $T_{\text{recipient}}$?	
(walk, Ø,unknown)	recipient	Where should I walk?	system
$(bring,unknown,T_{recipient})$	patient	What should I bring to $T_{\text{recipient}}$?	system
$(walk, \emptyset, T_{recipient})$	confirmation	You want me to walk to $T_{\text{recipient}}$?	system
$(bring, T_{patient}, T_{recipient})$	confirmation	You want me to bring $T_{patient}$ to $T_{recipient}$?	system

Learning from conversations

Template-based lexical generation procedure (GENLEX)

• For each utterance paired with a logical form seen during training:

Learning from conversations

Template-based lexical generation procedure (GENLEX)

• For each utterance paired with a logical form seen during training:

I want a flight to New York. $\lambda x.flight(x) \wedge to(x, NYC)$

Experimental setup

- Mechanical Turk
- Segbot Experiment
- Task:
 - Navigation
 - Delivery
- Survey

ROBOT	How can I help?
YOU	please bring the item in slot 5 to dave daniel
ROBOT	To whom should I bring something?
YOU	dave daniel
ROBOT	What action did you want me to take involving dave daniel?
YOU	5
ROBOT	What should I bring to dave daniel?
YOU	a calander
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	a day planner
ROBOT	I'm sorry, but I couldn't pinpoint what you meant by that.
ROBOT	What should I bring to dave daniel?
YOU	calendar
ROBOT	You want me to bring calendar to dave daniel?
YOU	yes
ROBOT	I thought so
ROBOT	Happy to help
YOU	
Final Task	
	Mechanical Turk

Segbot

Result (Mechanical turk)

Figure 4: Left: Average Mechanical Turk survey responses across the four test batches. Right: Mean user turns in Mechanical Turk dialogs where the correct goal was reached. Means in underlined bold differ significantly (p < 0.05) from the batch 0 mean.

Result (Segbot)

Table 2: Average Segbot survey responses from the two test groups and the proportion of task goals completed. Means in bold differ significantly (p < 0.05). Means in italics trend different (p < 0.1).

	Init Test	Trained Test	
Survey Question	Likert [0-4]		
Tasks Easy	3.8	3.7	
Robot Understood	1.6	2.9	
Robot Frustrated	2.5	1.5	
Use Navigation	2.8	2.5	
Use Delivery	1.6	2.5	
Goals Completed	Percent		
Navigation	90	90	
Delivery	20	60	