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Motivation

e Deep NNs are:

O Hard to encode domain knowledge into
o Uninterpretable
o Rely on labeled data

e Humans learn from:
o Concrete examples (data)
o General knowledge (rules)
m Past tense words mostly end in -d/-ed



Related Work

e Several previous attempts
e All have issues, including:
O  Need for specific NN architecture
O  Only applicable to specialized knowledge (similarity tuples)
O  Not applicable to using NNs (instead using graphical models)
O

Poor performance



Their work - Iterative Rule Knowledge Distillation

e Usable on any NN architecture (including CNNs, RNNs, etc)
e General types of knowledge representations
e (Good performance



Method
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Rules

e Rules: {(BR, )}, {rig(X, Y )} gy
e Each rule grounding ” is composed of soft boolean values
® A&B=max{A+ B-1,0}

AV B =min{A + B, 1}

ArA--NAN =) Ai/N

—A=1—-A

e However, each rule seems to be any arbitrary function
e FEachrule R has a confidence level A (value of « when hard constraint)



Teacher Network: q(Y]|X)

e Models p with the constraint:  Eq[7(X,Y)] = 1, with confidence 4

slack variable

min KL(g|lpo(YX)) +C >, &

S.t. )\1(1 — Eq['l“l(X, Y)]) < Sz

I =1, c0xqdy
e \ rule constraints

e Optimization Problem:

e (Closed-form:

¢ (Y|X) x po(Y|X) exp {— D o CM(1—ri(X, Y))}

(C is a fixed hyperparameter e.g. 400)



Method
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At Test time

e Can use student p,(Y]X) or teacher q(Y|X) for inference
e Tradeoff:

o Teacher performs better on average
o Student can be faster if the rule computation is expensive or unavailable at test time



Final Algorithm

Algorithm 1 Harnessing NN with Rules

Input: The training data D = {(Zn, yn)} o1,
The rule set R = {(Ri, A1)} -1,
Parameters: 7 — imitation parameter
C' — regularization strength
1: Initialize neural network parameter 0
2: repeat
3 Sample a minibatch (X,Y) C D
4. Construct teacher network g with Eq.(4)
5 Transfer knowledge into pp by updating 6 with Eq.(2)
6: until convergence
Output: Distill student network py and teacher network q




Results - Sentiment Classification

e Sentiment Classification using a CNN
PY Log Te Rule has-‘A-but-B’-structure(S) =
(Lly=+) = 06(B)+ A 09(B)s+ = 1y=+)),
Model SST2 MR CR
1 CNN (Kim, 2014) 87.2 81.31+0.1 84.34+0.2
2 CNN-Rule-p 88.8 81.61+0.1 85.0+0.3
3 CNN-Rule-gq 89.3 81.74+0.1 85.3+0.3
4 MGNC-CNN (Zhang et al., 2016) 88.4 - -
5 MVCNN (Yin and Schutze, 2015) 89.4 - -
6  CNN-multichannel (Kim, 2014) 88.1 81.1 85.0
7  Paragraph-Vec (Le and Mikolov, 2014) 87.8 - -
8 CRF-PR (Yang and Cardie, 2014) - - 82.7
9 RNTN (Socher et al., 2013) 854 - -
10 G-Dropout (Wang and Manning, 2013) - 79.0 82.1
Table 1: Accuracy (%) of Sentiment Classification. Row 1, CNN (Kim, 2014) is the base network

corresponding to the “CNN-non-static” model in (Kim, 2014). Rows 2-3 are the networks enhanced by
our framework: CNN-Rule-p is the student network and CNN-Rule-q is the teacher network. For MR and

CR, we report the average accuracytone standard deviation using 10-fold cross validation.

Model Accuracy (%)
1 CNN (Kim, 2014) 87.2
2 -but-clause 87.3
3 -lrreg 87.5
4  -project 87.9
5 -opt-project 88.3
6  -pipeline 87.9
7 -Rule-p 88.8
8 -Rule-q 89.3

Table 2: Performance of different rule integration
methods on SST2. 1) CNN is the base network; 2)
“_but-clause” takes the clause after “but” as input; 3)
“-fy-reg” imposes a regularization term |l (S) —
09(Y)||2 to the CNN objective, with the strength
~ selected on dev set; 4) “-project” projects the
trained base CNN to the rule-regularized subspace
with Eq.(3); 5) “-opt-project” directly optimizes the
projected CNN; 6) “-pipeline” distills the pre-trained
“-opt-project” to a plain CNN; 7-8) “-Rule-p” and “-
Rule-¢” are our models with p being the distilled stu-
dent network and q the teacher network. Note that
“-but-clause” and “-£,-reg” are ad-hoc methods ap-
plicable specifically to the “but’-rule.



Results - Named Entity Recognition

e Uses BLSTM-CNN
e Logic Rule:

is-counterpart(X, A) = 1 — [|c(ey) — c(os(A))|l2,
equal(y;—1,FORG) = - equal(y;, B-PER)

Model F1

BLSTM 89.55
BLSTM-Rule-trans p: 89.80, ¢: 91.11
BLSTM-Rules p: 89.93, ¢g: 91.18
NN-lex (Collobert et al., 2011) 89.59

S-LSTM (Lample et al., 2016) 90.33

BLSTM-lex (Chiu and Nichols, 2015)  90.77
BLSTM-CRF: (Lample et al., 2016)  90.94
Joint-NER-EL (Luo et al., 2015) 91.20
BLSTM-CRF; (Ma and Hovy, 2016) 91.21
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Table 4: Performance of NER on CoNLIL-2003. Row 2, BLSTM-Rule-trans imposes the
transition rules (Eq.(6)) on the base BLSTM. Row 3, BLSTM-Rules further incorporates
the list rule (Eq.(7)). We report the performance of both the student model p and the
teacher model gq.



Semi-supervised Learning

e (Can use unlabeled data to incorporate rule structure in student
e Loss during semi-supervised phase just becomes difference between
student and teacher

teacher network construction rule knowledge distillation
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Semi-supervised Results - Sentiment Classification

Data size 5% 10% 30% 100%

CNN 799 816 &83.6 87.2
-Rule-p 8l.5 &83.2 845 888
-Rule-q 82.5 839 &.6 89.3

-semi-PR 81.5 83.1 84.6 -
-semi-Rule-p 81.7 83.3 84.7 -
-semi-Rule-g 82.7 84.2 85.7 -

Y O = | W0 DN~

Table 3: Accuracy (%) on SST2 with varying sizes of labeled data and semi-supervised
learning. The header row is the percentage of labeled examples for training. Rows 1-3
use only the supervised data. Rows 4-6 use semi-supervised learning where the remaining
training data are used as unlabeled examples. For “-semi-PR” we only report its projected
solution (in analogous to g) which performs better than the non-projected one (in analogous

to p).



Their Contributions

Incorporated domain knowledge into NN model
Usable on any NN architecture

General types of knowledge representations
Good performance



Future Work

e Incorporate intermediate representations

#legs=4

e Learn confidence level A



