Harnessing Deep Neural Networks with Logic Rules

By Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric P. Xing

Presentation by Rishub Jain

Motivation

- Deep NNs are:
 - Hard to encode domain knowledge into
 - Uninterpretable
 - Rely on labeled data

- Humans learn from:
 - Concrete examples (data)
 - General knowledge (rules)
 - Past tense words mostly end in -d/-ed

Related Work

- Several previous attempts
- All have issues, including:
 - Need for specific NN architecture
 - Only applicable to specialized knowledge (similarity tuples)
 - Not applicable to using NNs (instead using graphical models)
 - Poor performance

Their work - Iterative Rule Knowledge Distillation

- Usable on any NN architecture (including CNNs, RNNs, etc)
- General types of knowledge representations
- Good performance

Method

• After:

(π is exponentially decreasing hyperparameter e.g. 1-0.9^t)

Rules

- Rules: $\{(R_l, \lambda_l)\}_{l=1}^L$ $\{r_{lg}(\boldsymbol{X}, \boldsymbol{Y})\}_{g=1}^{G_l}$
- Each rule grounding r_{la} is composed of soft boolean values

$$A\&B = \max\{A + B - 1, 0\}$$
$$A \lor B = \min\{A + B, 1\}$$
$$A_1 \land \dots \land A_N = \sum_i A_i / N$$
$$\neg A = 1 - A$$

- However, each rule seems to be any arbitrary function
- Each rule R₁ has a confidence level λ_1 (value of ∞ when hard constraint)

Teacher Network: q(Y|X)

• Models p with the constraint: $E_q[r(X,Y)] = 1$, with confidence λ

Optimization Problem:

$$\begin{array}{l} \min_{q,\xi \geq 0} \operatorname{KL}(q \| p_{\theta}(\boldsymbol{Y} | \boldsymbol{X})) + C \sum_{l} \xi_{l} \quad \text{slack variable} \\ \text{s.t. } \lambda_{l}(1 - \mathbb{E}_{q}[r_{l}(\boldsymbol{X}, \boldsymbol{Y})]) \leq \xi_{l} \\ l = 1, \dots, L \quad \text{rule constraints} \\ \end{array}$$
Closed-form:

$$\begin{array}{l} q^{*}(\boldsymbol{Y} | \boldsymbol{X}) \propto p_{\theta}(\boldsymbol{Y} | \boldsymbol{X}) \exp\left\{-\sum C \lambda_{l}(1 - r_{l}(\boldsymbol{X}, \boldsymbol{Y}))\right\}
\end{array}$$

1

(C is a fixed hyperparameter e.g. 400)

Method

- For each mini-batch:
 - Compute student: $p_{\theta}(Y|X)$
 - Compute projection on logic rule space (teacher): q(Y|X)
 - Run backprop to update weights of p_θ(Y|X) based on weighted average of teacher and student

At Test time

- Can use student $p_{\theta}(Y|X)$ or teacher q(Y|X) for inference
- Tradeoff:
 - Teacher performs better on average
 - Student can be faster if the rule computation is expensive or unavailable at test time

Final Algorithm

Algorithm 1 Harnessing NN with Rules

Input: The training data $\mathcal{D} = \{(\boldsymbol{x}_n, \boldsymbol{y}_n)\}_{n=1}^N$, The rule set $\mathcal{R} = \{(R_l, \lambda_l)\}_{l=1}^L$, Parameters: π – imitation parameter C – regularization strength

1: Initialize neural network parameter $\boldsymbol{\theta}$

2: repeat

- 3: Sample a minibatch $(X, Y) \subset D$
- 4: Construct teacher network q with Eq.(4)
- 5: Transfer knowledge into p_{θ} by updating θ with Eq.(2)

6: **until** convergence

Output: Distill student network p_{θ} and teacher network q

Results - Sentiment Classification

- Sentiment Classification using a CNN
- Logic Rule: $has-A-but-B'-structure(S) \Rightarrow$

 $(\mathbf{1}(y=+) \Rightarrow \boldsymbol{\sigma}_{\theta}(B)_+ \land \boldsymbol{\sigma}_{\theta}(B)_+ \Rightarrow \mathbf{1}(y=+)),$

	Model	SST2	MR	CR
1	CNN (Kim, 2014)	87.2	81.3±0.1	84.3±0.2
2	CNN-Rule-p	88.8	81.6±0.1	85.0 ± 0.3
3	CNN-Rule-q	89.3	81.7±0.1	85.3±0.3
4	MGNC-CNN (Zhang et al., 2016)	88.4	-	-
5	MVCNN (Yin and Schutze, 2015)	89.4	_	_
6	CNN-multichannel (Kim, 2014)	88.1	81.1	85.0
7	Paragraph-Vec (Le and Mikolov, 2014)	87.8	_	_
8	CRF-PR (Yang and Cardie, 2014)	_	_	82.7
9	RNTN (Socher et al., 2013)	85.4	_	_
10	G-Dropout (Wang and Manning, 2013)	_	79.0	82.1

Table 1: Accuracy (%) of Sentiment Classification. Row 1, CNN (Kim, 2014) is the base network corresponding to the "CNN-non-static" model in (Kim, 2014). Rows 2-3 are the networks enhanced by our framework: CNN-Rule-p is the student network and CNN-Rule-q is the teacher network. For MR and CR, we report the average accuracy \pm one standard deviation using 10-fold cross validation.

	Model	Accuracy (%)
1	CNN (Kim, 2014)	87.2
2	-but-clause	87.3
3	$-\ell_2$ -reg	87.5
4	-project	87.9
5	-opt-project	88.3
6	-pipeline	87.9
7	-Rule-p	88.8
8	-Rule- q	89.3

Table 2: Performance of different rule integration methods on SST2. 1) CNN is the base network; 2) "-but-clause" takes the clause after "but" as input; 3) "- ℓ_2 -reg" imposes a regularization term $\gamma || \sigma_{\theta}(S) - \sigma_{\theta}(Y) ||_2$ to the CNN objective, with the strength γ selected on dev set; 4) "-project" projects the trained base CNN to the rule-regularized subspace with Eq.(3); 5) "-opt-project" directly optimizes the projected CNN; 6) "-pipeline" distills the pre-trained "-opt-project" to a plain CNN; 7-8) "-Rule-p" and "-Rule-q" are our models with p being the distilled student network and q the teacher network. Note that "-but-clause" and "- ℓ_2 -reg" are ad-hoc methods applicable specifically to the "but"-rule.

Results - Named Entity Recognition

- Uses BLSTM-CNN
- Logic Rule:

is-counterpart $(X, A) \Rightarrow 1 - \|c(\mathbf{e}_y) - c(\boldsymbol{\sigma}_{\theta}(A))\|_2,$ equal $(y_{i-1}, \text{I-ORG}) \Rightarrow \neg \text{ equal}(y_i, \text{B-PER})$

	Model	F1	
1	BLSTM	89.55	
2	BLSTM-Rule-trans	p: 89.80, q: 91.11	
3	BLSTM-Rules	p: 89.93, q: 91.18	
4	NN-lex (Collobert et al., 2011)	89.59	
5	S-LSTM (Lample et al., 2016)	90.33	
6	BLSTM-lex (Chiu and Nichols, 2015)	90.77	
7	BLSTM-CRF ₁ (Lample et al., 2016)	90.94	
8	Joint-NER-EL (Luo et al., 2015)	91.20	
9	BLSTM-CRF ₂ (Ma and Hovy, 2016)	91.21	

Table 4: Performance of NER on CoNLL-2003. Row 2, BLSTM-Rule-trans imposes the transition rules (Eq.(6)) on the base BLSTM. Row 3, BLSTM-Rules further incorporates the list rule (Eq.(7)). We report the performance of both the student model p and the teacher model q.

Semi-supervised Learning

- Can use unlabeled data to incorporate rule structure in student
- Loss during semi-supervised phase just becomes difference between student and teacher

Semi-supervised Results - Sentiment Classification

	Data size	5%	10%	30%	100%
1	CNN	79.9	<mark>81.6</mark>	83.6	87.2
2	-Rule- p	81.5	83.2	84.5	88.8
3	$-\mathrm{Rule}-q$	82.5	83.9	85.6	89.3
4	-semi-PR	81.5	83.1	84.6	-
5	-semi-Rule-p	81.7	83.3	84.7	1
6	-semi-Rule-q	82.7	84.2	85.7	1.000

Table 3: Accuracy (%) on SST2 with varying sizes of labeled data and semi-supervised learning. The header row is the percentage of labeled examples for training. Rows 1-3 use only the supervised data. Rows 4-6 use semi-supervised learning where the remaining training data are used as unlabeled examples. For "-semi-PR" we only report its projected solution (in analogous to q) which performs better than the non-projected one (in analogous to p).

Their Contributions

- Incorporated domain knowledge into NN model
- Usable on any NN architecture
- General types of knowledge representations
- Good performance

Future Work

• Incorporate intermediate representations

• Learn confidence level λ