Generation and Comprehension of Unambiguous Object Descriptions

Goal

- Image captioning is subjective and ill-posed many valid ways to describe any given image, making evaluation difficult
- *Referring expression* An unambiguous text description that applies to exactly one object or region in the image.

Image caption A man playing soccer

Referring expression

The goalie wearing an orange and black shirt

Goal

Good referring expression -

- Uniquely describes the relevant region or object within its context
- A listener can comprehend and then recover the location of the described object/region

Consider two problems - 1) Description generation 2) Description comprehension

Dataset construction

For each image in MS-COCO dataset, an object is selected if

- There are between 2 and 4 instances of the same object type in the image
- Objects' bounding boxes occupy at least 5% of image area

Descriptions were generated and verified using MechTurk. Dataset denoted as Google Refexp (G-Ref)

The black and yellow backpack sitting on top of a suitcase.

A yellow and black back pack sitting on top of a blue suitcase.

An apple desktop computer.

The white IMac computer that is also turned on.

A girl wearing glasses and a pink shirt.

A woman in a flowered shirt.

Woman in red shirt.

A boy brushing his hair while looking at his reflection.

A young male child in pajamas shaking around hairbrush in the mirror.

The woman in black dress.

A lady in a black dress cuts a wedding cake with her new husband.

Tasks

 Generation - Given image I, a target region R (through bounding box), generate referring expression S* such that S* = argmax_S p(S|R, I) where S is a sentence. Used beam search of size 3

• Comprehension - Generate set C of region proposals and select region $R^* = argmax_{R \in C} p(R|S, I)$

$$p(R|S,I) = \frac{p(S|R,I)p(R|I)}{\sum_{R'\in\mathcal{C}} p(S|R',I)p(R'|I)}.$$

Assuming uniform prior for p(R|I), $R^* = argmax_{R \in C} p(S|R, I)$

At test time, generate proposals using multibox method, classify each proposal into one of the MS-COCO categories and discard those with low scores to get set *C*.

Baseline

Similar to image captioning models. To train the baseline model, minimize

$$J(\theta) = -\sum_{n=1}^{N} \log p(S_n | R_n, I_n, \theta)$$

Model architecture -

- Use last 1000-d layer of pretrained VGGNet to represent the image and the region.
- Additional 5-d feature [x_{tl}/W, y_{tl}/H, x_{br}/W, y_{br}/H, s_{bbox}/s_{image}] to encode relative size and location of the the region. x_{tl}, y_{tl}, x_{br}, y_{br} top-left and bottom right coordinates of the bounding box, s area, H,W height and width of the image
- This 2005-d vector is given as input at every time step to an LSTM along with a 1024-d word embedding of the word at previous time step.

Proposed method

The baseline method generates expressions based only on the target object (and some context) but does not provide any incentive to generate discriminative sentences.

Discriminative (MMI) training

Minimize,

$$J'(\theta) = -\sum_{n=1}^{N} \log p(R_n | S_n, I_n, \theta),$$

Equivalent to maximizing mutual information

$$\mathrm{MI}(S,R) = \log \frac{p(S,R)}{p(R)p(S)} = \log \frac{p(S|R)}{p(S)}$$

where

$$\log p(R_n|S_n, I_n, \theta) = \log \frac{p(S_n|R_n, I_n, \theta)}{\sum_{R' \in \mathcal{C}(I_n)} p(S_n|R', I_n, \theta)}$$

R_n - ground truth region, R' - any region. This method is called MMI - SoftMax

Proposed approach

Intuition - Penalize the model if the generated expression could also be plausible for some other region in the same image

Selecting proposal set C during training

- Easy ground truth negatives All ground truth bounding boxes in the image
- Hard ground truth negatives Ground truth bounding boxes belonging to the same class as target
- Hard multibox negatives Multibox proposals with same predicted object labels as target

5 random negatives for each target

Proposed approach

MMI-Max Margin

$$J''(\theta) = -\sum_{n=1}^{N} \{\log p(S_n | R_n, I_n, \theta) - \lambda \max(0, M - \log p(S_n | R_n, I_n, \theta) + \log p(S_n | R'_n, I_n, \theta))\}$$

- For computational reasons, use the max margin formulation above
- Has similar effect penalty if difference between log probabilities of ground truth and negative regions is smaller than M
- Requires comparison between only two images (GT + one negative), thereby allowing larger batch sizes and more stable gradients.

Results

					→ Using GT or
Proposals	GT		- Multibox -		multibox proposals at
Descriptions	GEN	GT	GEN	GT	test time
ML (baseline)	0.803	0.654	0.564	0.478	
MMI-MM-easy-GT-neg	0.851	0.677	0.590	0.492	
MMI-MM-hard-GT-neg	0.857	0.699	0.591	0.503	
MMI-MM-multibox-neg	0.848	0.695	0.604	0.511	Ground truth sentence
MMI-SoftMax	0.848	0.689	0.591	$0.50\overline{2}$ –	(comprehension task)
Proposed approaches perform bet		Generated sentence (generatio	d on task)		

- Maximum margin performs better than SoftMax
- Better to train using multibox negatives when testing on multibox proposals
- Comprehension easier when using generated sentences than ground truth sentences. Intuitively, a model can 'communicate' better with itself using its own language than with others

Results

- Previous results were on the UNC-Ref-Val dataset, which was used to select the best hyperparameter settings for all methods.
- Results of MMI-MM-multibox-neg (full model) on other datasets are also better than baseline
- Human evaluation % descriptions evaluated as better or equal to human captions

Baseline - 15.9% Proposed - 20.4%

Proposals	G	T	multibox					
Descriptions	GEN	GT	GEN	GT				
G-Ref-Val								
Baseline	0.751	0.579	0.468	0.425				
Full Model	0.799	0.607	0.500	0.445				
G-Ref-Test								
Baseline	0.769	0.545	0.485	0.406				
Full Model	0.811	0.606	0.513	0.446				
UNC-Ref-Val								
Baseline	0.803	0.654	0.564	0.478				
Full Model	0.848	0.695	0.604	0.511				
UNC-Ref-Test								
Baseline	0.834	0.643	0.596	0.477				
Full Model	0.851	0.700	0.603	0.518				

Qualitative Results

Generation

- Descriptions generated by the baseline and the proposed approach are below and above the dashed line respectively
- Proposed approach often removes ambiguity by providing direction/spatial cues such as left, right, behind

Qualitative Results

Comprehension

- Col 1: Test image
- Col 2: Multibox proposals
- Col 3: GT description
- Cols 4-6: Probe sentences
- Red bounding box:
- Output bounding box using proposed approach
- Dashed blue bounding boxes (cols 4-6): Other bounding boxes within margin

Image

Multibox Proposals

Description Comprehension Results A red suitcase. The truck in the background.

A black suitcase.

A dark brown horse with a white stripe A white horse wearing a black studded harness.

carrying a man.

A dark horse carrying a woman

A woman on the dark horse.

A skier with a black helmet, light

blue and black jacket, backpack,

and light grey pants standing.

to the camera

The giraffe with its back

The giraffe on the right.

A zebra.

Semi-supervised training

- D_{bb+txt} Bounding boxes + text (small set)
 D_{bb} Bounding boxes only (large set)
- Learn model G using D_{bb+txt}. Make predictions on D_{bb} to create D_{bb+auto}
- Train an ensemble of different models C on D_{bb+txt}
- Use model C to perform comprehension on D_{bb+auto}. If each ensemble model maps description to the correct object, keep it, else remove it
- Use $D_{bb+text} \cup D_{bb+auto}$ to retrain model G and repeat

Results

					→ Using GT or
Proposals	GT		— multibox —		multibox proposals at
Descriptions	GEN	GT	GEN	GT	test time
	G-F	Ref			
$D_{\rm bb+txt}$	0.791	0.561	0.489	0.417	
$D_{\mathrm{bb+txt}} \cup D_{\mathrm{bb}}$	0.793	0.577	0.489	0.424	
$D_{ m bb+txt}$	0.826	0.655	0.588	0.483	Ground truth sentence
$D_{\mathrm{bb+txt}} \cup D_{\mathrm{bb}}$	0.833	0.660	0.591-	0.486	→ (comprehension task)
				Generated sentence (generation	n task)