Weakly Supervised Training of Semantic Parsers

Krishnamurthy and Mitchell (2012)

Presented by Benjamin Striner

Contents

- Dataset and Task
- CCG
- Model
- Training
- Results
- Discussion

Dataset and Task

Dataset

- Knowledge base
 - 77 relations from Freebase
- Corpus
 - Web crawl for sentences
 - Discard sentences > 10 words
 - Dependency parsed
- String match between KB and parsed corpus
- Identify sentences containing two entities
 - 2.5 million (e1, e2, s) triples
 - 1% of triples are positive examples; subsample 5% of negative

Task

• 4 inputs, 1 output, 2 constraints

Input:

- 1. A knowledge base $K = (E, R, C, \Delta)$, as defined above.
- 2. A corpus of dependency-parsed sentences S.
- 3. A CCG lexicon Λ that produces logical forms containing predicates from K. Section 4.1 describes an approach to generate this lexicon.
- 4. A procedure for identifying mentions of entities from K in sentences from S. (e.g., simple string matching).

Output:

1. Parameters θ for the CCG that produce correct semantic parses ℓ for sentences $s \in S$.

- 1. Every relation instance $r(e_1, e_2) \in \Delta$ is expressed by at least one sentence in S (Riedel et al., 2010; Hoffmann et al., 2011).
- 2. The correct semantic parse of a sentence s contains a subset of the syntactic dependencies contained in a dependency parse of s.

Natural Language Queries

- Search for "X is a Y" sentences
- Create queries for Y
- Each query annotated with logical form (50 test, 50 val)
- Test recall of correct logical form

Example Query	Logical Form
capital of Russia	λx .CITYCAPITALOFCOUNTRY $(x, RUSSIA)$
wife of Abraham	λx .hasHusband $(x, A$ braham)
vocalist from	$\lambda x. \text{MUSICIAN}(x) \land$
London, England	$PERSONBORNIN(x, LONDON) \land$
	CITYINCOUNTRY(LONDON, ENGLAND)
home of	λx .HEADQUARTERS(CONOCOPHILLIPS, x)
ConocoPhillips	\land CITYINCOUNTRY $(x, CANADA)$
in Canada	

Table 3: Example natural language queries and their correct annotated logical form.

	Precision	Recall
PARSE	0.80	0.56
PARSE-DEP	0.45	0.32

Table 4: Precision and recall for predicting logical forms of natural language queries against Freebase. The table compares PARSE, trained with syntactic supervision to PARSE-DEP, trained without syntactic supervision.

Combinatory Categorical Grammar

CCG Notation

```
California := N: \lambda x.x = \text{California}

in := (N \backslash N)/N: \lambda f. \lambda g. \lambda x.

\exists y. f(y) \land g(x) \land \text{LocatedIn}(x,y)

X/Y: f \quad Y: g \implies X: f(g) \quad (>)

Y: g \quad X \backslash Y: f \implies X: f(g) \quad (<)
```

town := $N : \lambda x.CITY(x)$

CCG Rule Application

$$\frac{\text{town}}{N: \lambda x. \text{City}(x)} \text{Lex} \ \frac{\frac{\text{in}}{(N \backslash N) / N: \lambda f. \lambda g. \lambda x. \exists y. f(y) \land g(x) \land \text{LocatedIn}(x,y)} \text{Lex} \ \frac{\text{California}}{N: \lambda x. x = \text{California}} \text{Lex}}{N \backslash N: \lambda g. \lambda x. \exists y. y = \text{California} \land g(x) \land \text{LocatedIn}(x,y)} > \\ N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)}{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{LocatedIn}(x,y)} > \frac{N: \lambda x. \exists y. y = \text{California} \land \text{City}(x) \land \text{Ci$$

Figure 1: An example parse of "town in California" using the example CCG lexicon. The first stage in parsing retrieves a category from each word from the lexicon, represented by the "Lex" entries. The second stage applies CCG combination rules, in this case both forms of function application, to combine these categories into a semantic parse.

Model

Graphical Model

Random Variables

- Sentence $S_i = s_i$
- Semantic Parse $L_i = \ell_i$
- Constraint Satisfaction $Z_i = z_i$
- Truth of relation $Y_r = y_r$

Functions

- Semantic parser Γ
- Weak supervision Ψ Φ

$$p(\mathbf{Y} = \mathbf{y}, \mathbf{Z} = \mathbf{z}, \mathbf{L} = \ell | \mathbf{S} = \mathbf{s}; \theta) = \frac{1}{Z_{\mathbf{s}}} \prod_{r} \Psi(y_{r}, \ell) \prod_{i} \Phi(z_{i}, \ell_{i}, s_{i}) \Gamma(s_{i}, \ell_{i}; \theta)$$

Factor Graph

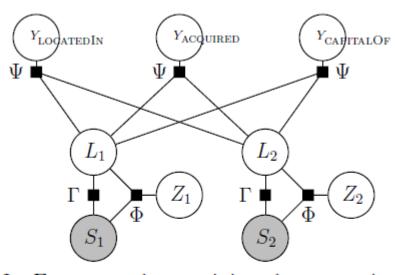


Figure 2: Factor graph containing the semantic parser Γ and weak supervision constraints Ψ and Φ , instantiated for an (e_1, e_2) tuple occurring in 2 sentences S_1 and S_2 , with corresponding semantic parses L_1 and L_2 . The knowledge base contains 3 relations, represented by the Y variables.

Semantic Parser Γ

- Log-linear probabilistic CCG
 - Count of each entry
 - Number of times each rule applied to each possible argument combination

$$\Gamma(s,\ell;\theta) = \exp\{\theta^T f(\ell,s)\}$$

Semantic Constraint Ψ

- Every relation should be expressed in the sentences
- No semantic parse should be a relation not in the KB
- Yr = is r(e1,e2) expressed in any sentence

```
\Psi(Y_r, \ell) =
1 \text{ if } Y_r = 1 \land \exists i. \text{EXTRACTS}(\ell_i, r, e_1, e_2)
1 \text{ if } Y_r = 0 \land \not\exists i. \text{EXTRACTS}(\ell_i, r, e_1, e_2)
0 \text{ otherwise}
```

Syntactic Constraint •

- Penalize ungrammatical parses
- Semantic parse should agree with dependency parse
- For every element of parse tree, head words should have a dependency edge

```
\Phi(z, \ell, s) = 1 \text{ if } z = \text{AGREE}(\ell, \text{DEPPARSE}(s))
0 otherwise
```

Training

Lexicon Generation

- Dependency parse the corpus
- Create entries based on dependency relationships containing entities
 - (relationships on next slide)
- Prune infrequent categories

Dependency Parse Patterns

Part of Speech	Dependency Parse Pattern	Lexical Category Template	
Proper	(name of entity e)	$\mathbf{w} := N : \lambda x . x = e$	
Noun	Sacramento	Sacramento := $N : \lambda x.x = SACRAMENTO$	
Common	$e_1 \xrightarrow{SBJ}$ [is, are, was,] \xleftarrow{OBJ} w	$\mathbf{w} := N : \lambda x.c(x)$	
Noun	Sacramento is the capital	$capital := N : \lambda x.CITY(x)$	
Noun Modifier	$e_1 \stackrel{NMOD}{\longleftarrow} e_2$	Type change $N: \lambda x.c(x)$ to $N N: \lambda f.\lambda x.\exists y.c(x) \land f(y) \land r(x,y)$	
Modifier	Sacramento, California	$N: \lambda x. \operatorname{City}(x) \text{ to } N N: \lambda f. \lambda x. \exists y. \operatorname{City}(x) \land f(y) \land \operatorname{LocatedIn}(x,y)$	
Preposition	$e_1 \xleftarrow{NMOD} \mathbf{w} \xleftarrow{PMOD} e_2$ Sacramento in California	$\begin{aligned} \mathbf{w} &:= (N \backslash N) / N : \lambda f. \lambda g. \lambda x. \exists y. f(y) \land g(x) \land r(x,y) \\ \mathbf{in} &:= (N \backslash N) / N : \lambda f. \lambda g. \lambda x. \exists y. f(y) \land g(x) \land LocatedIn(x,y) \end{aligned}$	
	$e_1 \xrightarrow{SBJ} VB^* \xleftarrow{ADV} w \xleftarrow{PMOD} e_2$ Sacramento is located in California	$\begin{aligned} \mathbf{w} &:= PP/N : \lambda f. \lambda x. f(x) \\ \mathbf{in} &:= PP/N : \lambda f. \lambda x. f(x) \end{aligned}$	
	$e_1 \xrightarrow{SBJ} w^* \xleftarrow{OBJ} e_2$ Sacramento governs California	$\begin{aligned} \mathbf{w}^* &:= (S \backslash N) / N : \lambda f. \lambda g. \exists x, y. f(y) \land g(x) \land r(x,y) \\ \text{governs} &:= (S \backslash N) / N : \lambda f. \lambda g. \exists x, y. f(y) \land g(x) \land LocatedIn(x,y) \end{aligned}$	
Verb	$e_1 \xrightarrow{SBJ} w^* \xleftarrow{ADV} [IN,TO] \xleftarrow{PMOD} e_2$ Sacramento is located in California	$\begin{aligned} \mathbf{w}^* &:= (S \backslash N)/PP : \lambda f. \lambda g. \exists x, y. f(y) \land g(x) \land r(x,y) \\ \text{is located} &:= (S \backslash N)/PP : \lambda f. \lambda g. \exists x, y. f(y) \land g(x) \land LOCATEDIN(x,y) \end{aligned}$	
	$e_1 \xleftarrow{NMOD} w^* \xleftarrow{ADV} [IN,TO] \xleftarrow{PMOD} e_2$ Sacramento located in California	$\mathbf{w}^* := (N \backslash N)/PP : \lambda f. \lambda g. \lambda y. f(y) \land g(x) \land r(x,y)$ located := $(N \backslash N)/PP : \lambda f. \lambda g. \lambda y. f(y) \land g(x) \land LOCATEDIN(x,y)$	
Forms of "to be"	(none)	$\mathbf{w}^* := (S \backslash N) / N : \lambda f. \lambda g. \exists x. g(x) \land f(x)$	

Table 1: Dependency parse patterns used to instantiate lexical categories for the semantic parser lexicon Λ . Each pattern is followed by an example phrase that instantiates it. An * indicates a position that may be filled by multiple consecutive words in the sentence. e_1 and e_2 are the entities identified in the sentence, r represents a relation where $r(e_1, e_2)$, and c represents a category where $c(e_1)$. Each template may be instantiated with multiple values for the variables e, c, r.

Most Frequent Relations

Relation Name	Relation Instances	Sentences
CITYLOCATEDINSTATE	2951	13422
CITYLOCATEDINCOUNTRY	1696	7904
CITYOFPERSONBIRTH	397	440
COMPANIESHEADQUARTEREDHERE	326	432
MUSICARTISTMUSICIAN	251	291
CITYUNIVERSITIES	239	338
CITYCAPITALOFCOUNTRY	123	2529
HASHUSBAND	103	367
PARENTOFPERSON	85	356
HASSPOUSE	81	461

Table 2: Occurrence statistics for the 10 most frequent relations in the training data. "Relation Instances" shows the number of entity tuples (e_1, e_2) that appear as positive examples for each relation, and "Sentences" shows the total number of sentences in which these tuples appear.

Training

- Structured perceptron learning rule
- Each train example is two entities and every sentence containing both
- First optimization is easy because y and z are functions of parse
- Second optimization requires beam search over parses
 - Generate 300 parses
 - Eliminate using constraints

$$\ell^{predicted} \leftarrow \arg \max_{\boldsymbol{\ell}} \max_{\mathbf{y}, \mathbf{z}} p(\boldsymbol{\ell}, \mathbf{y}, \mathbf{z} | \mathbf{s}^{j}; \theta^{t})$$

$$\ell^{actual} \leftarrow \arg \max_{\boldsymbol{\ell}} p(\boldsymbol{\ell} | \mathbf{y}^{j}, \mathbf{z}^{j}, \mathbf{s}^{j}; \theta^{t})$$

$$\theta^{t+1} \leftarrow \theta^{t} + \sum_{i} f(\ell^{actual}_{i}, s_{i})$$

$$-\sum_{i} f(\ell^{predicted}_{i}, s_{i})$$

Results

Three models

- PARSE: semantic parser
- PARSE+DEP: observes correct dependency parse at test time
- PARSE-DEP: no syntactic constraint

Results

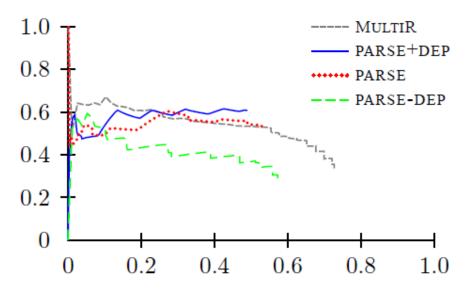


Figure 3: Aggregate precision as a function of recall, for MULTIR (Hoffman et al., 2011) and our three semantic parser variants.

Discussion

- Supervising a semantic parser directly requires annotating sentences with logical forms
- This model uses more readily-available supervision
 - Knowledge base
 - Dependency parses