Best of both worlds: Transferring knowledge from Discriminative Learning to a Generative Visual Dialog Model

Jiasen Lu, Anitha Kannan, Jianwei Yang, Devi Parikh, Dhruv Batra
Overview

- Problem: MLE trained generative neural dialog models (G) produce ‘safe’, generic responses (‘I don’t know’, ‘I can’t tell’)
- Discriminative dialog models (D) trained to rank a list of candidate human responses outperform their generative counterparts; in terms of automatic metrics, diversity, and informativeness of the responses.
- However, D not useful in practice
- Their approach: best of both worlds – the practical usefulness of G and the strong performance of D – via knowledge transfer from D to G
- End-to-end trainable generative visual dialog model, where G receives gradients from D as a perceptual (not adversarial) loss of the sequence sampled from G.
Introduction

- Discriminative dialog model (D) receives as input a candidate list of possible responses and learns to sort this list from the training dataset.
- G aims to produce a sequence that D will rank the highest in the list.
- Unlike traditional GANs, discriminator receives a list of candidate responses, explicitly learns to reason about similarities and differences across candidates.
- D learns a task-dependent perceptual similarity and learns to recognize multiple correct responses in the feature space.
- Employ metric-learning loss function and a self-attention answer encoding mechanism for D.
Visual Dialog

- A visual dialog model is given as input an image I, caption c describing the image, a dialog history till round $t - 1$, and the followup question q_t at round t. The visual history $H = \left(\underbrace{c}_{H_0}, \underbrace{(q_1, a_1)}_{H_1}, \ldots, \underbrace{(q_{t-1}, a_{t-1})}_{H_{t-1}} \right)$.
- Generative models for visual dialog are trained by maximizing MLE of the ground truth answer sequence.
- Discriminative models receive both an encoding of the input, as additional input a list of 100 candidate answers $A_t = \{a^{(1)}_t, \ldots, a^{(100)}_t\}$. Effectively learn to sort the list, hence they cannot be used at test time without a list of candidates available.
Approach

Caption: A gray tiger cat sitting underneath a metal bench.

Option answers (D)	Score
No bird | |
I do not see any birds | |
No | |
No , I do not | |
Nope | |
Not at all | |
Not that I can see | |
yes | |
... | |
Somewhere in his 30’s | |
Mangoes | |
White | |
I see small shops | |
Approach

Image 1

Do you see any birds?

Question Q_t

- A gray tiger cat sitting underneath a metal bench.
- Is it in color? Yes it is.
- Is it daytime? Yes.
- Is the tiger big? No, it's a regular cat.

t rounds of history

HQI

Generator

- Gumbel Sampler
- Answer Decoder
- HCIAE Encoder

e_t

Answer a_t^*
- Not that I can see
- No bird
- I do not see any birds
- No
- No, I do not
- Nope
- Yes
- Mangoes
- White
- I see small shops

Discriminator

- Answer Encoder
- HCIAE Encoder

e_t

$Deep$ $Metric$ $Loss$

<table>
<thead>
<tr>
<th>Option answers (D)</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>No bird</td>
<td></td>
</tr>
<tr>
<td>I do not see any birds</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
</tr>
<tr>
<td>No, I do not</td>
<td></td>
</tr>
<tr>
<td>Nope</td>
<td></td>
</tr>
<tr>
<td>Not that I can see</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Mangoes</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
</tr>
<tr>
<td>I see small shops</td>
<td></td>
</tr>
</tbody>
</table>
History-Conditioned Image Attentive Encoder (HCIAE)

- Use of co-reference to avoid repeating entities that can be contextually resolved, nearly all (98%) dialogs involve at least one pronoun
- Uses current question to attend to exchanges in history, and then uses the question and attended history to attend to the image
- Use the spatial image features from a convolution layer of a CNN encoded with an LSTM to get a vector
- Conditioned on the question embedding, the model attends to the history
- Attended representation of the history and the question embedding are concatenated, and used as input to attend to the image
History-Conditioned Image Attentive Encoder

\[z_t^h = w_a^T \tanh(W_h M_t^h + (W_q m_t^q) \mathbb{1}^T) \]
\[\alpha_t^h = \text{softmax}(z_t^h) \]

- \(\mathbb{1} \in \mathbb{R}^{1 \times d} \) with all elements 1
- \(W_h, W_q \in \mathbb{R}^{i \times d} \), \(w_a \in \mathbb{R}^k \)
- \(\alpha \in \mathbb{R}^k \)
- \(\hat{m}_t^h \): attended history feature
- Final embedding \(e_t = \tanh(W_e [m_t^q, \hat{m}_t^h, \hat{v}_t]) \), \(W_e \in \mathbb{R}^{d \times 3d} \)
Discriminator Loss

- Discriminator D produces distribution over candidate answer list A_t
- Maximize the log-likelihood of
- Loss conducive to knowledge transfer, a_i^{gt} encourages perceptually meaningful similarities
- Metric-learning multi-class N-pair loss:

$$L_D = L_{n-pair}\left(\{e_t, a_t^{gt}, \{a_{t,i}\}_{i=1}^{N-1}\}, f\right) = \log \left(1 + \sum_{i=1}^{N} \exp\left(e_t^T f(a_{t,i}) - e_t^T f(a_t^{gt})\right)\right)$$

- f attention based LSTM encoder, helps deal with paraphrases in answer
- Attention weight is learnt through a 1-layer MLP over LSTM output at each time step
Knowledge Transfer from D to G

- Transferring knowledge from D to G: G repeatedly queries D with answers generated for input embedding e to get feedback and update itself
- G’s goal: update parameters to have \(\hat{a}_t \) score higher than ground truth

\[
\mathcal{L}_G = \mathcal{L}_{1-pair}(\{e_t, \hat{a}_t, a_t^{gt}\}, f) = \log \left(1 + \exp \left(e_t^T f(a_t^{gt}) - e_t^T f(\hat{a}_t) \right) \right)
\]

- Gumbel-Softmax (GS) approximation to sample answer from generator, coupled with the straight-through gradient estimator (discretize GS samples through forward pass)
Training Details In our experiments, all 3 LSTMs are single layer with 512d hidden state. We use VGG-19 [42] to get the representation of image. We first rescale the images to be 224×224 pixels, and take the output of last pooling layer ($512 \times 7 \times 7$) as image feature. We use the Adam optimizer with a base learning rate of $4e-4$. We pre-train G using standard MLE for 20 epochs, and D with supervised training based on Eq (4) for 30 epochs. Following [43], we regularize the L^2 norm of the embedding vectors to be small. Subsequently, we train G with $\mathcal{L}_G + \alpha \mathcal{L}_{MLE}$, which is a combination of discriminative perceptual loss and MLE loss. We set α to be 0.5. We found that including \mathcal{L}_{MLE} (with teacher-forcing) is important for encouraging G to generate grammatically correct responses.
Table 1: Results (generative) on VisDial dataset. “MRR” is mean reciprocal rank and “Mean” is mean rank.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-G [7]</td>
<td>0.5199</td>
<td>41.83</td>
<td>61.78</td>
<td>67.59</td>
<td>17.07</td>
</tr>
<tr>
<td>HREA-G [7]</td>
<td>0.5242</td>
<td>42.28</td>
<td>62.33</td>
<td>68.17</td>
<td>16.79</td>
</tr>
<tr>
<td>MN-G [7]</td>
<td>0.5259</td>
<td>42.29</td>
<td>62.85</td>
<td>68.88</td>
<td>17.06</td>
</tr>
<tr>
<td>HCIAE-G-MLE</td>
<td>0.5386</td>
<td>44.06</td>
<td>63.55</td>
<td>69.24</td>
<td>16.01</td>
</tr>
<tr>
<td>HCIAE-G-DIS</td>
<td>0.5467</td>
<td>44.35</td>
<td>65.28</td>
<td>71.55</td>
<td>14.23</td>
</tr>
</tbody>
</table>

Table 2: Results (discriminative) on VisDial dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-D [7]</td>
<td>0.5807</td>
<td>43.82</td>
<td>74.68</td>
<td>84.07</td>
<td>5.78</td>
</tr>
<tr>
<td>HREA-D [7]</td>
<td>0.5868</td>
<td>44.82</td>
<td>74.81</td>
<td>84.36</td>
<td>5.66</td>
</tr>
<tr>
<td>MN-D [7]</td>
<td>0.5965</td>
<td>45.55</td>
<td>76.22</td>
<td>85.37</td>
<td>5.46</td>
</tr>
<tr>
<td>HCIAE-D-MLE</td>
<td>0.6140</td>
<td>47.73</td>
<td>77.50</td>
<td>86.35</td>
<td>5.15</td>
</tr>
<tr>
<td>HCIAE-D-NP</td>
<td>0.6182</td>
<td>47.98</td>
<td>78.35</td>
<td>87.16</td>
<td>4.92</td>
</tr>
<tr>
<td>HCIAE-D-NP-ATT</td>
<td>0.6222</td>
<td>48.48</td>
<td>78.75</td>
<td>87.59</td>
<td>4.81</td>
</tr>
</tbody>
</table>
Table 3: Qualitative comparison.

<table>
<thead>
<tr>
<th>Image+Caption</th>
<th>Question</th>
<th>GT Answer</th>
<th>G-MLE Answer</th>
<th>G-DIS Answer</th>
</tr>
</thead>
</table>
| ![A couple of people in the snow on skis.](image) | Is the person male or female?
About how old is the person?
What color is his hair?
What is he wearing?
What kind of bag does he have?
Is he on a mountain?
Is the mountain also snow covered?
Can you see clouds?
Is the sun shining?
Does he look happy? | Male
Male
Black
UNK and pant with shoes
Luggage bag
Yes
Yes, it is snow mountain
Yes
No
Not sure | I can’t tell
I can’t tell
Brown
Black jacket
A small 1
Yes
Yes
Yes
No
Yes
Can’t tell | Male
Can’t tell
Brown
Snowsuit
Backpack
Yes
Yes
Yes
No
Can’t tell |
| ![Two zebra standing next to each other in a dry grass field.](image) | Are zebras in zoo?
Are they adults or babies?
Are they standing next to each other?
Is there water source in image?
Is it sunny out?
Any trees?
Are zebras eating?
Any other animals in picture?
Is there any type of enclosure?
Is grass green? | No zebras not in zoo
I would say they are adults
I lead in front , while other 1
No
It does look like sunny
There are few trees but is not in
No , they are walking
No
No
No | No
They are adult
Yes they are
No water
Yes
Yes, many trees
No, they are just standing around
No
No
Yes | No
They appear to be adult
Yes they are
I do not see any water
Yes it is
Yes, lots of trees in background
No they are not eating
No
No
Yes |

Table 4: Adversarial training results on VisDial dataset.

<table>
<thead>
<tr>
<th>Model</th>
<th>Discriminative</th>
<th>Generative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRR</td>
<td>R@1</td>
</tr>
<tr>
<td>HCIAE-D-NP-ATT</td>
<td>0.6222</td>
<td>48.48</td>
</tr>
<tr>
<td>HCIAE-G-DIS</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HCIAE-GAN1</td>
<td>0.2177</td>
<td>8.82</td>
</tr>
<tr>
<td>HCIAE-GAN2</td>
<td>0.6050</td>
<td>46.20</td>
</tr>
</tbody>
</table>