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Course logistics

* This is a seminar course. There will be no homework.

* Prerequisites: Machine Learning, Deep Learning, Computer Vision, Basic
Natural Language Processing (and their prerequisites, e.g., Linear Algebra,
Probability, Optimization).

e Each student presents 2-3 papers per semester. Please add your name in that
doc: https://docs.google.com/document/d/1JNd4HS-
RxR_hVZ3egUix6xelgLiMQTgA1cEB43Mkyac/edit?usp=sharing. Next, you
will be added to a doc with list of papers. Please add your name next to the
paper you wish to present in the shared doc. You may add a paper of your
preference in the list. FIFS. Papers with no volunteers will be either discarded
or presented briefly in the introductory overview in each course.

* Final project: An implementation of language grounding in images/videos/
simulated worlds and/or agent actions, with the dataset/supervision setup of
your choice. There will be help on the project during office hours.


https://docs.google.com/document/d/1JNd4HS-RxR_hVZ3egUtx6xelqLiMQTgA1cEB43Mkyac/edit?usp=sharing
https://docs.google.com/document/d/1JNd4HS-RxR_hVZ3egUtx6xelqLiMQTgA1cEB43Mkyac/edit?usp=sharing

Overview

* Goal of our work life
 What is language grounding

 What NLP has achieved w/o explicit grounding ( supervised neural
models for reading comprehension, syntactic parsing etc.)+ quick
overview of basic neural architectures that involve text

 Neural models VS child models

* Theories of simulation/imagination for language grounding

What is the problem with current vision-language models?



Goal of our work life

* To solve Al: build systems that can see, understand human language, and act
in order to perform tasks that are useful.

« Task examples: book appointments/flights, send emails, question answering,
description of a visual scene, summarization of activity from NEST home
camera, holding a coherent situated dialogue etc.

* Q: Isitthat Language Understanding is harder than Visual Understanding and
thus should be studied after Visual Understanding is mastered?

» Potentially no. NLP and vision can go hand in hand. In fact, language has
tremendously helped Visual Understanding already. Rather than easy or
hard senses (vision, NLP etc), there are easy and hard examples within
each: e.g., detecting/understanding nouns is EASIER than detecting/
understanding complicated noun phrases or verbal phrases. Indeed,
Imagenet classification challenge is a great example of very successful
object label grounding.



How language helps action/behavior learning

Many animals can be trained to perform novel
tasks. E.g., monkeys can be trained to harvest
coconuts; after training, they climb on trees and spin
them till they fall off.

Training is a torturous process: they are trained by
imitation and trial and error, through reward and
punishment.

The hardest part is conveying the goal of the activity
Language can express a novel goal effortlessly and succinctly!

Consider the simple routine of looking both ways when crossing a busy street
—a domain ill suited to trial and error learning. In humans, the objective can
be programmed with a few simple words (“Look both ways before crossing

the street”).



How language helps action/behavior learning

“Many animals can be trained to perform novel tasks. People, too, can be
trained, but sometime in early childhood people transition from being
trainable to something qualitatively more powerful—being programmable.
...avallable evidence suggests that facilitating or even enabling this
programmability is the learning and use of language.”

How language programs the mind, Lupyan and Bergen



How language helps Computer Vision

 Explanation based learning: For a complex new concept, e.qg.,
burglary, instead of collecting a lot of positive and negative
examples and training concept classifier, as purely statistical
models do, we can define it based on simpler concepts
(explanations) that are already grounded.

 E.g., aburglary involves entering from smashed window, the
person often wears a mask and tries to take valuable things from
the house, e.g. TV”

* |In Computer Vision, simplified explanations are known as
attributes.



What is Language Grounding”

Connecting linguistic symbols to perceptual experiences and actions.

Examples:

« Sleep (V)

* Dog reading newspaper (NP)

Nl

7|
. Climb on chair to reach lamp (VP) Zolkg

2.8 N

Google didn’t find something sensible here, which is why we
have the course



What is not Language Grounding??

Not connecting linguistic symbols to perceptual experiences and actions,
but rather connecting linguistic symbols to other linguistic symbols.

Example from Wordnet:

- Sleep” means be asleep”

N

sleep (v) asleep (adj)
“be asleep” “in a state of sleep”

This results in circular definitions

sleep(n): "a natural
and periodic state of
rest during which
consciousness of the
world is suspended”

Slide adapted from Raymond Mooney



Historical Roots of ldeas on Language Grounding

Meaning as Use & Language Games

Wittgenstein (1953)

Symbol Grounding
Harnad (1990)

"Without grounding is as if we are trying to
learn Chinese using a Chinese-Chinese
dictionary”

Slide adapted from Raymond Mooney



Bypassing explicit grounding

Task: Learn Word Vector Representations
(in-an unsupervised way) from large text corpora

* Input: the one hot encoding of a word (long sparse vector, as long as the
vocabulary size) hotel=[0 0 0 .. 1 .. 0]

* Qutput: a low dimensional vector hotel =[0.23 0.45 -2.3 .. -1.22]

* Supervision: No supervision is used, no annotations

Q: Why such low-dim representation is worthwhile?



From Symbolic to Distributed Representations

* |ts problem, e.g., for web search

- If user searches for [Dell notebook battery size], we would like to
match documents with "Dell laptop battery capacity”

- If user searches for [ Seattle motel], we would like to match
documents containing "Seattle hotel"

* But:
motel[000000000010000]
hotel[000000010000000]=0
- Our query and document vectors are orthogonal

- There is no natural notion of similarity in a set of one-hot vectors

* Could deal with similarity separately; instead we explore a direct
approach, where vectors encode it.

Slide adapted from Chris Manning



Distributional Similarity Based Representations

You can get a lot of value by representing a word by means of
its neighbors:

"You shall know a word by the company it keeps."
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP.

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 74

Slide adapted from Chris Manning



Word Meaning is Defined in Terms of Vectors

We will build a dense vector for each word type, chosen so that it
IS good at predicting other words appearing in its context

...those other words also being represented by vectors... it all gets a bit recursive

4 N
0.286

0.792
-0.177
-0.107

0.109
-0.542

0.349

0.271

linguistics =

Slide adapted from Chris Manning



Basic |dea of Learning Neural Network Word Embeddings

- We define a model that aims to predict between a center word
wt and context words in terms of word vectors:

p(context | wi) = ...
- which has a loss function, e.g.:
J=1-p(wil w)
- We look at many positions t in a big language corpus.

- We keep adjusting the vector representations of words to
minimize this loss.

Slide adapted from Chris Manning



Skip Gram Predictions
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Slide adapted from Chris Manning



Detalls of word2vec

« Foreachwordt=1, ..., T, predict surrounding words in a
window of "radius" m of every word.

» Objective function: Maximize the probability of any context
word given the current center word.
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Where theta represents all variables we will optimize

Slide adapted from Chris Manning



Detalls of word2vec

* Predict surrounding words in a window of radius m of
every word

« For p(w:wj | wi) the simplest first formulation is:

Where o is the outside (or output) word index, c is the center
word index, vc; and u, are "center" and "outside" vectors of
indices cand o

- Softmax using word c to obtain probability of word o

Slide adapted from Chris Manning
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Slide adapted from Chris Manning



Detalls of word2vec

* The normalization factor is too computationally expensive.

Instead of exhaustive summation in practice we use negative sampling

Slide adapted from Chris Manning



Detalls of word2vec

e From paper: “Distributed Representations of Words and Phrases
and their Compositionality” (Mikolov et al. 2013)

e Overall objective function: J(0) = % ZL J¢(0)
k

Ji(0) = logo (u:{vc) + Z i P (w) [loga (—u;‘-rvc)}
i=1

* P(w): background word probabilities (obtained by counting).
We use UN3/4} to boost probabilities of very infrequent words.

Slide adapted from Chris Manning



word2vec Improves Objective Function by Putting Similar
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Slide adapted from Chris Manning



Learning word vectors by counting co-occurrences and

SVD

e With a co-occurrence matrix X:
- Two options: full document vs. windows

- Word-document co-occurrence matrix will give general
topics (all sports teams will have similar entries) leading
to "Latent Semantic Analysis)

 |nstead: Similar to word2vec, use window around each
word --> captures both syntactic (POS) and semantic
iInformation

Slide adapted from Richard Socher



Window Based Co-Occurrence Matrix

Example Corpus
- | like deep learning.

- | like NLP.
- | enjoy flying.

counts |1 __|like | enjoy |deep _
0

learning | NLP | flying |
0 0

o 1 0 0
I : o 0 1 0 1 0 0
. o 0 0 0 0 1 0
o ¢ 0 0 1 0 0 0
g0 o 0 1 0 0 0 1
T 0 0 0 0 0 1
flying ORIV 1 0 0 0 0 1
B o 0 0 1 11 0

Slide adapted from Richard Socher



Problems with Simple Co-Occurrence Vectors

Same problems as one hot word representations:
* |ncrease in size with vocabulary
* Very high dimensional: require a lot of storage
» Subsequent classification models have sparsity issues

e Models are less robust

Slide adapted from Richard Socher



Reduce Dimensionality

Singular Value Decomposition of co-occurrence matrix X.
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X is the best rank k approximation to X, in terms of least squares.

Slide adapted from Richard Socher



Reduce Dimensionality

Singular Value Decomposition of co-occurrence matrix X.
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Slide adapted from Richard Socher



Interesting Semantic Patterns Emerge in the Vectors

o SHEEESING
m CHGSENOSE
m STOLEN
e STEAL

OSTOLE
OSTEALING

o TOOK

] THB%%W&%EW
SHOWN
. o SHOWED m EAJENT
OATE
O SHOWING OEATING
e SHOW
" GROWNOoW
o GREW
O0GROWING

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence
Rohde et al. 2005

Slide adapted from Richard Socher



Interesting Semantic Patterns Emerge in the Vectors

o DRIVE

O CLEAN

e DRIVER

o SWIM

O LEARN

e SWIMMER

OTEACH

O TREAT

e JANITOR
e STUDENT

e TEACHER

e DOCTOR

o PRIE

o MARRY

BRIDE
ST

O PRAY

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence

Rohde et al. 2005

Slide adapted from Richard Socher



Interesting Semantic Patterns Emerge in the Vectors

Nearest words to
frog:

1. frogs

2. toad

3. litoria

4. leptodactylidae

5. rana
6. lizard

7. eleutherodactylus

rana eleutherodactylus

Slide adapted from Richard Socher



Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence
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I ate t 1€ spaghetth with chopsticks ate thegspaghett \\1t11 meatball\




Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence

* |nput: A sentence
* Qutput: The syntactic tree

* Supervision: Large scale corpora human annotated with syntactic
parse trees, e.dg., Penn Treebank

* Model examples: Neural syntactic parsers, e.g., Grammar as a
Foreign Language, where an attention based seqg-to-seq model
maps a sentence to each syntactic tree, expressed in a DFS
format



Recurrent Neural Networks!

 RNNs tie the weights at each time step

» Condition the neural network on all previous words

yt—l yt yt+1
ht-l % ht ‘ ht+1 %
W W
e | ® Jol
® > @ S| @
>0 ¢ ¢
At-1 X Xt
0000 (000e| (0000

Slide adapted from Richard Socher



RNN language model

target Word lliSll "the" Ilproblemll

output likelihood yl y2 y3

I R L7

%4
hidden state hl > h2 —hh’ h3 >
L w
input embedding xl x2 JC3

input word "What" "Is" “the"



Recurrent Neural Network Language Model

Given list of word vectors: Z1,---sTt—1, %t Tig1s- -+, TT

. . hh hx
At a single time step: he = o (W( iy + W >fﬂ[t1)
Jy = softmax (W(S )ht>
lf’(xtﬂ :’Uj ’ xt,...,$1> = ﬁt,j

(59) > CD

)
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(t—1) B(®) .@ : > : —> Ut
O O
S
X h
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Slide adapted from Richard Socher



Recurrent Neural Network Language Model

Main idea: we use the same set of W weights at all time
steps!

Everything else is the same: " = o (W(hh)ht—l + W(h"”)x[t])
J; = softmax (W(S )ht)
P(ZEH_l :‘Uj ‘ $t,...,$1) = th,j

ho € R”" js some initialization vector for the hidden layer
at time step O

is the column vector of L at index [t] at time step t

W(hh) c RDh X Dy, W(hfc) c RDh X d W(S) c R|V|XDh

Slide adapted from Richard Socher



Recurrent Neural Network Language Model

Yy € RV1is 5 probability distribution over the vocabulary

Same cross entropy loss function but predicting words
instead of classes

\4
JO0) = =) yrjlog i,
j=1

Slide adapted from Richard Socher



Bidirectional BRNNs

Problem: For classification you want to incorporate
information from words both preceding and following

Zr = f(WX, + ‘—/:l—”lt—l + l;)
zt = f(Wxt + V?lwl + E)
y, = gUlh:;hi]+c)

h=[h;h] now represents (summarizes) the past and future
around a single token.

Slide adapted from Richard Socher



* Standard RNN computes hidden layer at next time step
directly: he = f (W(hh)ht—l +W U“?)a:t)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

<t — O (W(z)ﬂft -+ U(z)ht_l)

 Compute reset gate similarly but with different weights
'+ — O (W(T).CCt —+ U(T)ht_1>

Slide adapted from Richard Socher



* Update gate 2=0 (W(Z%ct + U(Z)ht—1>
* Reset gate re=o0 (W<"“>:ct +U ("“>ht_1)

*  New memory content: h: = tanh (W + ;0 Uhy_1)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

* Final memory at time step combines current and
previous time steps: he =z 0 hy_1+ (1 — 2;) o hy

Slide adapted from Richard Socher



GRU Intuition

If reset is close to O, =0 (W(Z)"”t T U(z)ht—l)
ignore previous hidden state re=o (W(%t + U(”ht_l)
- Allows model to drop hy = tanh (Way + 7 0 Uhy_1)

information that is irrelevant -
] ht:ZtOht_l‘l_(]._Zt)Oht
in the future

Update gate z controls how much of past state should
matter now.

* Ifzclose to 1, then we can copy information in that unit
through many time steps! Less vanishing gradient!

Units with short-term dependencies often have reset
gates very active

Slide adapted from Richard Socher



| ong-short-term-memories (LSTMs)

We can make the units even more complex

Allow each time step to modify

* Input gate (current cell matters) =0 (W(i)fct + U(”ht—l)

* Forget (gate O, forget past) fe=o0 (W(f)xt + U(f)ht—l)

*  Output (how much cell is exposed) ot =0 (W(O)Hit + U(())ht—l)

*  New memory cell ¢t = tanh (W(C>:vt + U(C)ht—1>
Final memory cell: ¢t = froci—1+ 406

Final hidden state: hy = o o tanh(c;)

Slide adapted from Richard Socher



* |n the models we have seen so far, the output labels align with the
input (word) sequence.

« What if the inout and output sequences have different lengths? Q:
example tasks?



Modern Sequence Models for NMT

Sutskever et al. 2014, fc. Bahdanau et al. 2014, et seq.

Je suis étudiant -
A
Ewncodev Decodev
I am a student — Je suis étudiant



Modern Sequence Models for NMT

Sutskever et al. 2014, fc. Bahdanau et al. 2014, et seq.

Translation
The| protests escalated over  the| weekend <EOS>
generated

Encoder:
Builds u
P Decoder
sentence
meaning
Source Die  Proteste waren am Wochenende eskaliert <EOS> | The protests escalated over |the weekend Feedingin
sentence last word

A deep recurrent neural network



Conditional Recurrent Language Model

Le chat assis sur le tapis. |

2

L e :'» The cat sat on the mat.

p(cat|.. p(is|...) p(eating|..

the
v @b—@—@—@
the cat

[ Encoder J




Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence

First we convert the syntactic tree into a sequence

S

|
John has a dog . - NP /Vp\ .
| e Y
NNP VBZ NP
~ N
DT NN

John has a dog . — (S (NP NNP )Np (VP VBZ (NP DT NN )Np )Vp . )S



Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence




Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence
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I ate tle spaghettt with chopsticks. ate thegspaghett \\1“1 mcatball\

—

These models do not explicitly know how meatballs and chopsticks look like, or
their explicit affordances, however, they do learn implicitly their affordances, by
looking at large amounts of text. Is such implicit understanding enough?



Bypassing explicit grounding

Task: Reading Comprehension

Mary moved to the bathroom. John went to the hallway. Daniel went back to the hallway. Sandra
moved to the garden.

Q: Where 1s Mary? A: bathroom

Q: Where 1s Daniel? A: hallway

* Input: A passage of text, and a set of questions regarding the
passage

* Qutput: the desired answers

e Supervision: from pairs of (passage+questions, ground truth
answers)

 Model examples: Memory networks, dynamic memory networks,
(gated) attention readers etc.



Dynamic Memory Network
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Slide adapted from Richard Socher




The Modules: Input

Standard GRU. The last hidden state of each sentence is accessible.

Slide adapted from Richard Socher



Further Improvement: BIGRU

layer GRU & -{ GRU | L GRU

Slide adapted from Richard Socher



The Modules: Question

g = GRU(vy,q4-1)




The Modules: Episodic Memory

hf — gitGRU(Si: hf—1) T (1 — git

Last hidden state: mt




The Modules: Episodic Memory

e (Gates are activated in sentence relevant to the
guestion or memory.

t _ . -1 . -
z; =[sieq;siom ™ |s; —ql;|s; —mtT]

Zt=W® tanh (W2t 4 5D) 4 5
g?— exp(Z,f)
T M;
Zk=1 eXP(ZItg)

 When the end of the input is reached, the relevant
facts are summarized in another GRU

Slide adapted from Richard Socher



The Modules: Episodic Memory

It summary Is insufficient to answer the
guestion, repeat sequence over input.

Slide adapted from Richard Socher



The Modules: Answer
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Slide adapted from Richard Socher



Bypassing explicit grounding

We circumvent grounding by using large amounts of
supervised training data.

Not only for syntactic parsing, reading
comprehension, but for sense disambiguation, for
POS tagging, semantic role labelling etc.



Children Do Not Learn Language from Supervised Data

Penn Propbank | | Senseval Semeval
Treebank Data Data

Slide adapted from Raymond Mooney



Children Do Not Learn Language from Raw Text

Unsupervised language learning is difficult

and not an adequate solution since much

of the requisite semantic information is not
in the linguistic signal.



Children do not learn language from television

Simply aligned visual and
linguistic representations do not
support learning in infants. Yet,
all image captioning and visual
guestion answering models work
learn from dataset of such
aligned representations.




L earning Language from Perceptual Context

* The natural way to learn language is to perceive language
in the context of its use in the physical and social world.

* This requires inferring the meaning of utterances from
their perceptual context.

That’s a nice
green block you
have there!

Slide adapted from Raymond Mooney



Problem: Dataset collection!

Supervision is the bottleneck! Is much harder to have robots
wondering around interacting with things and humans giving them
sparse linguistic rewards.

We will visit in the course many efforts/shortcut/solutions to
supervision and models researchers have come up thus far. We
definitely do not need to follow the embodiment solution, if we can
do without it.



What is wrong with ungrounded language”

15194F-60044 VE HE o A FE SV B &< FE, EMEARJL A /)
NV 220 v [ FIRASEEMAT 1 s =45 2

In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the first two-thirds of soldiers against their loss.

translate.google.com (2011): 1519 600 Spaniards landed in Mexico, millions of people to
conquer the Aztec empire, the initial loss of soldiers, two thirds of their encounters.

translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.

translate.google.com (2014/15/16): 1519 600 Spaniards landed in Mexico, millions of
people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.

translate.google.com (2017):In 1519, 600 Spaniards landed in Mexico, to conquer the
millions of people of the Aztec empire, the first confrontation they killed two-thirds.



What is wrong with ungrounded language”

Symbol Grounding and Meaning: A Comparison of High-Dimensional
and Embodied Theories of Meaning

Arthur M. Glenberg and David A. Robertson

University of Wisconsin—Madison

...Because the symbols are ungrounded, they cannot, in principle, capture the

meaning of novel situations. In contrast, (human) participants in three experiments found it trivially easy to
discriminate between descriptions of sensible novel situations (e.g., using a newspaper to protect

one’s face from the wind) and nonsense novel situations (e.g., using a matchbook to protect one’s face

from the wind). These results support the Indexical Hypothesis that the meaning of a sentence is

constructed by (a) indexing words and phrases to real objects or perceptual, analog symbols; (b)

deriving affordances from the objects and symbols; and (c) meshing (coordinating) the affordances under the
guidance of syntax.

Cosine vector similarities of sentences, defined as the avg of the vectors of their
word constituents, failed to detect coherent versus not coherent stories, while
humans succeeded.



What is wrong with ungrounded language”

LLSA cosines

Sentence to Central to
setting distinguishing

Setting: Marissa forgot to bring her pillow on her camping trip.
Afforded: As a substitute for her pillow, she filled up an old sweater with

leaves. 58 08
Nonafforded: As a substitute for her pillow, she filled up an old sweater

with water. 55 06
Related: As a substitute for her pillow, she filled up an old sweater with

clothes. 63 24
Setting: Mike was freezing while walking up State Street into a brisk wind.

He knew that he had to get his face covered pretty soon or he would get

frostbite.

Unfortunately, he didn’t have enough money to buy a scarf.
Afforded: Being clever, he walked into a store and bought a newspaper to

cover his face. 38 06
Nonafforded: Being clever, he walked into a store and bought a matchbook

to cover his face. 42 03
Related: Being clever, he walked into a store and bought a ski-mask to

cover his face. 41 46

Note. Central concepts are italicized; distinguishing concepts are in boldface.



Word meaning in a grounded Language (Glenberg and

Robertson 1999)

The meaning of a particular situation for a particular animal is the coordinated
set of actions available to that animal in that situation.

For example, a chair affords sitting to beings with humanlike bodies, but it does
not afford sitting for elephants. A chair also affords protection against snarling
dogs for an adult capable of lifting the chair into a defensive position, but not
for a small child.

The set of actions depends on the individual’s learning history, including
personal experiences of actions and learned cultural norms for acting.

Thus, a chair on display in a museum affords sitting, but that action is blocked
by cultural norms.

Third, the set of actions depends on the individual’s goals for action.

A chair can be used to support the body when resting is the goal, and it can be
used to raise the body when changing a light bulb is the goal.



Word meaning in a grounded Language (Glenberg and

Robertson 1999)

The meaning of a word is not given by its relations to other words and other

abstract symbols. Instead, the meaning of words in sentences is emergent:
Meaning emerges from the mesh of affordances, learning history,

and goals. Thus the meaning of the word “chair” is not fixed: A chair can be
used to sit on, or as a step stool, or as a weapon. Depending on our learning
histories, it might also be useful in a balancing act or to protect us from

lions In a circus ring. A newspaper can be read, but it can also serve as a
scart.

Thus, language comprehension according to this theory, is closely
connected to learning affordances and Physics of the world.



What is wrong with current Visual-language Models
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What is wrong with current Visual-language Models
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What is wrong with current Visual-language Models
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What is wrong with current Visual-language Models
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What is wrong with current Visual-language Models
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What i1s wrong with current Visual-Language Models

Current Visual-Language models still do not reason about affordances and
Physics.

They do not easily generalize to ' novel” situations.

Their success depends on similarity of the test set to the training data.



. anguage grounding as mental simulation

Comprehending a word like “eagle” activates visual circuits that

capture the implied shape (Zwaan, Stanfield, & Yaxley, 2002) canonical location
(Estes, Verges, & Barsalou, 2008), and other visual properties of the object, as
well as auditory information. Words denoting actions like stumble engage motor,
haptic, and affective circuits (Glenberg & Kaschak, 2002).

We now know that the neural mechanisms underlying imagining a red circle are
similar in many respects to the mechanisms that underlie seeing a red circle
(Kosslyn, Ganis, & Thompson, 2001). Thus maybe vision provides the simulation

of thought.

On this view, there is no need for a language of thought. It’'s not that we think
“In” language. Rather, language directly interfaces with the mental
representations, helping to form the (approximately) compositional, abstract
representations. Mental simulations for “You handed Andy the pizza” and “Andy
handed you the pizza” are measurably different even though they contain the
same words (Glenberg & Kaschak, 2002).



