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Course logistics

• This is a seminar course. There will be no homework. 

• Prerequisites: Machine Learning, Deep Learning, Computer Vision, Basic 
Natural Language Processing (and their prerequisites, e.g., Linear Algebra, 
Probability, Optimization). 

• Each student presents 2-3 papers per semester. Please add your name in that 
doc: https://docs.google.com/document/d/1JNd4HS-
RxR_hVZ3egUtx6xelqLiMQTgA1cEB43Mkyac/edit?usp=sharing.  Next, you 
will be added to a doc with list of papers. Please add your name next to the 
paper you wish to present in the shared doc. You may add a paper of your 
preference in the list. FIFS. Papers with no volunteers will be either discarded 
or presented briefly in the introductory overview in each course.

• Final project: An implementation of language grounding in images/videos/
simulated worlds and/or agent actions, with the dataset/supervision setup of 
your choice. There will be help on the project during office hours.

https://docs.google.com/document/d/1JNd4HS-RxR_hVZ3egUtx6xelqLiMQTgA1cEB43Mkyac/edit?usp=sharing
https://docs.google.com/document/d/1JNd4HS-RxR_hVZ3egUtx6xelqLiMQTgA1cEB43Mkyac/edit?usp=sharing


Overview

• Goal of our work life

• What is language grounding

• What NLP has achieved w/o explicit grounding ( supervised neural 
models for reading comprehension, syntactic parsing etc.)+ quick 
overview of basic neural architectures that involve text

• Neural models VS child models

• Theories of simulation/imagination for language grounding

•  What is the problem with current vision-language models?



Goal of our work life

• To solve AI: build systems that can see, understand human language, and act 
in order to perform tasks that are useful. 

• Task examples: book appointments/flights, send emails, question answering, 
description of a visual scene, summarization of activity from NEST home 
camera, holding a coherent situated dialogue  etc. 

• Q: Is it that Language Understanding is harder than Visual Understanding and 
thus should be studied after Visual Understanding is mastered?

• Potentially no. NLP and vision can go hand in hand. In fact, language has 
tremendously helped Visual Understanding already. Rather than easy or 
hard senses (vision, NLP etc), there are easy and hard examples within 
each: e.g., detecting/understanding nouns is EASIER than detecting/
understanding  complicated noun phrases or verbal phrases. Indeed, 
Imagenet classification challenge  is a great example of very successful 
object label grounding.



How language helps action/behavior learning

Many animals can be trained to perform novel 
tasks. E.g., monkeys can be trained to harvest 
coconuts; after training, they climb on trees and spin 
them till they fall off.
Training is a torturous process: they are trained by 
imitation and trial and error, through reward and 
punishment.

Language can express a novel goal effortlessly and succinctly!
The hardest part is conveying the goal of the activity

Consider the simple routine of looking both ways when crossing a busy street
—a domain ill suited to trial and error learning. In humans, the objective can 
be programmed with a few simple words (“Look both ways before crossing 
the street”).



How language helps action/behavior learning

``Many animals can be trained to perform novel tasks. People, too, can be 
trained, but sometime in early childhood people transition from being 
trainable to something qualitatively more powerful—being programmable. 
…available evidence suggests that facilitating or even enabling this 
programmability is the learning and use of language.”

                                 How language programs the mind, Lupyan and Bergen



How language helps Computer Vision

• Explanation based learning: For a complex new concept, e.g., 
burglary, instead of collecting a lot of positive and negative 
examples and training concept classifier, as purely statistical 
models do, we can define it based on simpler concepts 
(explanations) that are already grounded. 

• E.g., ``a burglary involves entering from smashed window, the 
person often wears a mask and tries to take valuable things from 
the house, e.g. TV”

• In Computer Vision, simplified explanations are known as 
attributes.



Connecting linguistic symbols to perceptual experiences and actions.

Examples:

•  Sleep (v)

• Dog reading newspaper (NP)

• Climb on chair to reach lamp (VP)

What is Language Grounding?
Sample Circular Definitions

from WordNet

3

sleep (v)
“be asleep”

asleep (adj)
“in a state of sleep”

Google didn’t find something sensible here, which is why we 
have the course



What is not Language Grounding?

Not connecting linguistic symbols to perceptual experiences and actions, 
but rather connecting linguistic symbols to other linguistic symbols.

sleep(n): ``a natural 
and periodic state of 
rest during which 
consciousness of the 
world is suspended”

This results in circular definitions 

Sample Circular Definitions
from WordNet

3

sleep (v)
“be asleep”

asleep (adj)
“in a state of sleep”

Example from Wordnet: 

• ``Sleep” means ``be asleep”

Slide adapted from Raymond Mooney



Historical Roots of Ideas on Language Grounding

Meaning as Use & Language Games

"Without grounding is as if we are trying to 
learn Chinese using a Chinese-Chinese 
dictionary"

Wittgenstein (1953)

Symbol Grounding
Harnad (1990)

Slide adapted from Raymond Mooney



Bypassing explicit grounding

• Input: the one hot encoding of a word (long sparse vector, as long as the 
vocabulary size)

• Output: a low dimensional vector  hotel = [0.23 0.45 -2.3 … -1.22]

• Supervision: No supervision is used, no annotations 

Task: Learn Word Vector Representations  
(in an unsupervised way) from large text corpora

hotel = [0 0 0 … 1 … 0]

Q: Why such low-dim representation is worthwhile?



• Its problem, e.g., for web search
• If user searches for [Dell notebook battery size], we would like to 

match documents with "Dell laptop battery capacity"

• If user searches for [Seattle motel], we would like to match 
documents containing "Seattle hotel"

• But:
motel [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]T  

hotel [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0
• Our query and document vectors are orthogonal
• There is no natural notion of similarity in a set of one-hot vectors

• Could deal with similarity separately; instead we explore a direct 
approach, where vectors encode it. 

From Symbolic to Distributed Representations

Slide adapted from Chris Manning



Distributional	similarity	based	representations

You	can	get	a	lot	of	value	by	representing	a	word	by	
means	of	its	neighbors

“You	shall	know	a	word	by	the	company	it	keeps”
(J.	R.	Firth	1957:	11)

One	of	the	most	successful	ideas	of	modern	statistical	NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

ë These	words	will	represent	banking	ì

Distributional Similarity Based Representations

You can get a lot of value by representing a word by means of 
its neighbors:

"You shall know a word by the company it keeps."
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP.

Slide adapted from Chris Manning



Word	meaning	is	defined	in	terms	of	vectors

We	will	build	a	dense	vector	for	each	word	type,	chosen	so	that	
it	is	good	at	predicting	other	words	appearing	in	its	context
… those	other	words	also	being	represented	by	vectors	… it	all	gets	a	bit	recursive

linguistics		=

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271

 Word Meaning is Defined in Terms of Vectors

We will build a dense vector for each word type, chosen so that it 
is good at predicting other words appearing in its context
...those other words also being represented by vectors... it all gets a bit recursive

Slide adapted from Chris Manning



Basic Idea of Learning Neural Network Word Embeddings

• We define a model that aims to predict between a center word 
wt and context words in terms of word vectors:

p(context | wt) = …

• which has a loss function, e.g.: 

J = 1 – p(w-t | wt)

• We look at many positions t in a big language corpus.

• We keep adjusting the vector representations of words to 
minimize this loss.

Slide adapted from Chris Manning



Skip-gram	prediction Skip Gram Predictions

Slide adapted from Chris Manning



Details	of	word2vec

For	each	word	t =	1	… T,	predict	surrounding	words	in	a	
window	of	“radius”	m of	every	word.

Objective	function:	Maximize	the	probability	of	any	
context	word	given	the	current	center	word:

Where	θ represents	all	variables	we	will	optimize

Details of word2vec
• For each word t = 1, ... , T, predict surrounding words in a 

window of "radius" m of every word.

• Objective function: Maximize the probability of any context 
word given the current center word.

Where theta represents all variables we will optimize
Slide adapted from Chris Manning



Details	of	Word2Vec

Predict	surrounding	words	in	a	window	of	radius	m of	
every	word

For																						the	simplest	first	formulation	is	

where	o is	the	outside	(or	output)	word	index,	c is	the	
center	word	index,	vc and	uo are	“center”	and	“outside”	
vectors	of	indices	c and	o

Softmax using	word	c to	obtain	probability	of	word	o

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

• Predict surrounding words in a window of radius m of 
every word

• For p(wt+j | wt) the simplest first formulation is: 

Details of word2vec

Where o is the outside (or output) word index, c is the center 
word index, vc and uo are "center" and "outside" vectors of 
indices c and o

• Softmax using word c to obtain probability of word o
Slide adapted from Chris Manning



Skip	gram	model	structure

Slide adapted from Chris Manning



Details	of	Word2Vec

Predict	surrounding	words	in	a	window	of	radius	m of	
every	word

For																						the	simplest	first	formulation	is	

where	o is	the	outside	(or	output)	word	index,	c is	the	
center	word	index,	vc and	uo are	“center”	and	“outside”	
vectors	of	indices	c and	o

Softmax using	word	c to	obtain	probability	of	word	o

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

• The normalization factor is too computationally expensive.

Instead of exhaustive summation in practice we use negative sampling

Details of word2vec

Slide adapted from Chris Manning



Ass	1:	The	skip-gram	model	and	nega(ve	sampling	

•  From	paper:	“Distributed	RepresentaRons	of	Words	and	Phrases	
and	their	ComposiRonality”	(Mikolov	et	al.	2013)	

•  Overall	objecRve	funcRon:		

•  Where	k	is	the	number	of	negaRve	samples	and	we	use,	

•  The	sigmoid	funcRon!		
(we’ll	become	good	friends	soon)	

•  So	we	maximize	the	probability		
of	two	words	co-occurring	in	first	log	
à	

Details of word2vec

Slide adapted from Chris Manning

• P(w): background word probabilities (obtained by counting). 
We use U^{3/4} to boost probabilities of very infrequent words.



Word2vec	improves	objec(ve	func(on	by	puMng	
similar	words	nearby	in	space	

word2vec Improves Objective Function by Putting Similar 
Words Nearby in Space

Slide adapted from Chris Manning



Learning word vectors by counting co-occurrences and 
SVD

• With a co-occurrence matrix X:

• Two options: full document vs. windows

• Word-document co-occurrence matrix will give general 
topics (all sports teams will have similar entries) leading 
to "Latent Semantic Analysis)

• Instead: Similar to word2vec, use window around each 
word --> captures both syntactic (POS) and semantic 
information

Slide adapted from Richard Socher



Window	based	co-occurrence	matrix	

1/17/17	Richard	Socher	15	

•  Example	corpus:		
•  I	like	deep	learning.		

•  I	like	NLP.		

•  I	enjoy	flying.	
counts	 I	 like	 enjoy	 deep	 learning	 NLP	 flying	 .	

I	 0	 2	 1	 0	 0	 0	 0	 0	

like	 2	 0	 0	 1	 0	 1	 0	 0	

enjoy	 1	 0	 0	 0	 0	 0	 1	 0	

deep	 0	 1	 0	 0	 1	 0	 0	 0	

learning	 0	 0	 0	 1	 0	 0	 0	 1	

NLP	 0	 1	 0	 0	 0	 0	 0	 1	

flying	 0	 0	 1	 0	 0	 0	 0	 1	

.	 0	 0	 0	 0	 1	 1	 1	 0	

 Window Based Co-Occurrence Matrix
Example Corpus

• I like deep learning.

• I like NLP.

• I enjoy flying. 

Slide adapted from Richard Socher



Problems with Simple Co-Occurrence Vectors

Same problems as one hot word representations:

• Increase in size with vocabulary

• Very high dimensional: require a lot of storage

• Subsequent classification models have sparsity issues

• Models are less robust

Slide adapted from Richard Socher



Reduce Dimensionality
Method	1:	Dimensionality	Reduc(on	on	X	

1/17/17	18	

Singular	Value	DecomposiRon	of	co-occurrence	matrix	X.		

	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

is	the	best	rank	k	approximaRon	to	X	,	in	terms	of	least	squares.		
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X̂ is the best rank k approximation to X , in terms of least
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tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.
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Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

is	the	best	rank	k	approximaRon	to	X	,	in	terms	of	least	squares.		
	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

r

= nn

r

r

X U S

S
S
S

S
.

2
3

1

r

UUU1 2 3

V
m m

V
V
1

2

3. . .
..

. ..

=n

X U S

m

V T

V T

UUU1 2 3

Sk

0

0

0

0

V
m

V
V
1

2

3
..

.

S
S
S2 3

1

. ..

kk

kn

r

k

Figure 1: The singular value decomposition of matrix X .
X̂ is the best rank k approximation to X , in terms of least
squares.

tropy of the document distribution of row vector a. Words
that are evenly distributed over documents will have high
entropy and thus a low weighting, reflecting the intuition
that such words are less interesting.
The critical step of the LSA algorithm is to compute

the singular value decomposition (SVD) of the normal-
ized co-occurrencematrix. An SVD is similar to an eigen-
value decomposition, but can be computed for rectangu-
lar matrices. As shown in Figure 1, the SVD is a prod-
uct of three matrices, the first, U , containing orthonormal
columns known as the left singular vectors, and the last,
VT containing orthonormal rows known as the right sin-
gular vectors, while the middle, S, is a diagonal matrix
containing the singular values. The left and right singu-
lar vectors are akin to eigenvectors and the singular values
are akin to eigenvalues and rate the importance of the vec-
tors.1 The singular vectors reflect principal components,
or axes of greatest variance in the data.
If the matrices comprising the SVD are permuted such

that the singular values are in decreasing order, they can
be truncated to a much lower rank, k. It can be shown that
the product of these reducedmatrices is the best rank k ap-
proximation, in terms of sum squared error, to the original
matrix X . The vector representing word a in the reduced-
rank space is Ûa, the ath row of Û , while the vector repre-
senting document b is V̂b, the bth row of V̂ . If a new word,
c, or a new document, d, is added after the computation
of the SVD, their reduced-dimensionality vectors can be
computed as follows:

Ûc = XcV̂ Ŝ−1

V̂d = XTd ÛŜ
−1

The similarity of two words or two documents in LSA
is usually computed using the cosine of their reduced-
dimensionality vectors, the formula for which is given in

1In fact, if the matrix is symmetric and positive semidefinite, the left
and right singular vectors will be identical and equivalent to its eigen-
vectors and the singular values will be its eigenvalues.

Table 3. It is unclear whether the vectors are first scaled
by the singular values, S, before computing the cosine,
as implied in Deerwester, Dumais, Furnas, Landauer, and
Harshman (1990).
Computing the SVD itself is not trivial. For a dense

matrix with dimensions n < m, the SVD computation
requires time proportional to n2m. This is impractical
for matrices with more than a few thousand dimensions.
However, LSA co-occurrence matrices tend to be quite
sparse and the SVD computation is much faster for sparse
matrices, allowing the model to handle hundreds of thou-
sands of words and documents. The LSA similarity rat-
ings tested here were generated using the term-to-term
pairwise comparison interface available on the LSA web
site (http://lsa.colorado.edu).2 The model was trained on
the TouchstoneApplied Science Associates (TASA) “gen-
eral reading up to first year college” data set, with the top
300 dimensions retained.

2.3 WordNet-based models

WordNet is a network consisting of synonym sets, repre-
senting lexical concepts, linked together with various rela-
tions, such as synonym, hypernym, and hyponym (Miller
et al., 1990). There have been several efforts to base a
measure of semantic similarity on the WordNet database,
some of which are reviewed in Budanitsky and Hirst
(2001), Patwardhan, Banerjee, and Pedersen (2003), and
Jarmasz and Szpakowicz (2003). Here we briefly sum-
marize each of these methods. The similarity ratings re-
ported in Section 3 were generated using version 0.06 of
Ted Pedersen’s WordNet::Similarity module, along with
WordNet version 2.0.
The WordNet methods have an advantage over HAL,

LSA, and COALS in that they distinguish between mul-
tiple word senses. This raises the question, when judg-
ing the similarity of a pair of polysemous words, of
which senses to use in the comparison. When given the
pair thick–stout, most human subjects will judge them to
be quite similar because stout means strong and sturdy,
which may imply that something is thick. But the pair
lager–stout is also likely to be considered similar because
they denote types of beer. In this case, the rater may not
even be consciously aware of the adjective sense of stout.
Consider also hammer–saw versus smelled–saw. Whether
or not we are aware of it, we tend to rate the similarity of
a polysemous word pair on the basis of the senses that are
most similar to one another. Therefore, the same was done
with the WordNet models.

2The document-to-document LSAmode was also tested but the term-
to-term method proved slightly better.

4

Slide adapted from Richard Socher



Interes(ng	syntac(c	paVers	emerge	in	the	vectors	

1/17/17	23	

An	Improved	Model	of	SemanRc	Similarity	Based	on	Lexical	Co-Occurrence		
Rohde	et	al.	2005	
	

Rohde, Gonnerman, Plaut Modeling Word Meaning Using Lexical Co-Occurrence

READ

CALLED

TOLD

HEARD

ASKED

CUT

FELT

NOTICED

EXPLAINED

KICKED

JUMPED

DETECTED

EMAILED

QUESTIONED

SHOUTED

TASTED

PUNCHED

SHOVED

STABBED

SMELLED
SENSED

BASHED

TACKLED

DISCERNED

Figure 10: Multidimensional scaling of three verb semantic classes.
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Figure 11: Multidimensional scaling of present, past, progressive, and past participle forms for eight verb families.
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Figure 13: Multidimensional scaling for nouns and their associated verbs.

Table 10
The 10 nearest neighbors and their percent correlation similarities for a set of nouns, under the COALS-14K model.

gun point mind monopoly cardboard lipstick leningrad feet
1) 46.4 handgun 32.4 points 33.5 minds 39.9 monopolies 47.4 plastic 42.9 shimmery 24.0 moscow 59.5 inches
2) 41.1 firearms 29.2 argument 24.9 consciousness 27.8 monopolistic 37.2 foam 40.8 eyeliner 22.7 sevastopol 57.7 foot
3) 41.0 firearm 25.4 question 23.2 thoughts 26.5 corporations 36.7 plywood 38.8 clinique 22.7 petersburg 52.0 metres
4) 35.3 handguns 22.3 arguments 22.4 senses 25.0 government 35.6 paper 38.4 mascara 20.7 novosibirsk 45.7 legs
5) 35.0 guns 21.5 idea 22.2 subconscious 23.2 ownership 34.8 corrugated 37.2 revlon 20.3 russia 45.4 centimeters
6) 32.7 pistol 20.1 assertion 20.8 thinking 22.2 property 32.3 boxes 35.4 lipsticks 19.6 oblast 44.4 meters
7) 26.3 weapon 19.5 premise 20.6 perception 22.2 capitalism 31.3 wooden 35.3 gloss 19.5 minsk 40.2 inch
8) 24.4 rifles 19.3 moot 20.4 emotions 21.8 capitalist 31.0 glass 34.1 shimmer 19.2 stalingrad 38.4 shoulders
9) 24.2 shotgun 18.9 distinction 20.1 brain 21.6 authority 30.7 fabric 33.6 blush 19.1 ussr 37.8 knees
10) 23.6 weapons 18.7 statement 19.9 psyche 21.3 subsidies 30.5 aluminum 33.5 nars 19.0 soviet 36.9 toes

Table 11
The 10 nearest neighbors for a set of verbs, according to the COALS-14K model.

need buy play change send understand explain create
1) 50.4 want 53.5 buying 63.5 playing 56.9 changing 55.0 sending 56.3 comprehend 53.0 understand 58.2 creating
2) 50.2 needed 52.5 sell 55.5 played 55.3 changes 42.0 email 53.0 explain 46.3 describe 50.6 creates
3) 42.1 needing 49.1 bought 47.6 plays 48.9 changed 40.2 e-mail 49.5 understood 40.0 explaining 45.1 develop
4) 41.2 needs 41.8 purchase 37.2 players 32.2 adjust 39.8 unsubscribe 44.8 realize 39.8 comprehend 43.3 created
5) 41.1 can 40.3 purchased 35.4 player 30.2 affect 37.3 mail 40.9 grasp 39.7 explained 42.6 generate
6) 39.5 able 39.7 selling 33.8 game 29.5 modify 35.7 please 39.1 know 39.0 prove 37.8 build
7) 36.3 try 38.2 sells 32.3 games 28.3 different 33.3 subscribe 38.8 believe 38.2 clarify 36.4 maintain
8) 35.4 should 36.3 buys 29.0 listen 27.1 alter 33.1 receive 38.5 recognize 37.1 argue 36.4 produce
9) 35.3 do 34.0 sale 26.8 playable 25.6 shift 32.7 submit 38.0 misunderstand 37.0 refute 35.4 integrate
10) 34.7 necessary 31.5 cheap 25.0 beat 25.1 altering 31.5 address 37.9 understands 35.9 tell 35.2 implement

Table 12
The 10 nearest neighbors for a set of adjectives, according to the COALS-14K model.

high frightened red correct similar fast evil christian
1) 57.5 low 45.6 scared 53.7 blue 59.0 incorrect 44.9 similiar 43.1 faster 24.3 sinful 48.5 catholic
2) 51.9 higher 37.2 terrified 47.8 yellow 37.7 accurate 43.2 different 41.2 slow 23.4 wicked 48.1 protestant
3) 43.4 lower 33.7 confused 45.1 purple 37.5 proper 40.8 same 37.8 slower 23.2 vile 47.9 christians
4) 43.2 highest 33.3 frustrated 44.9 green 36.3 wrong 40.6 such 28.2 rapidly 22.5 demons 47.2 orthodox
5) 35.9 lowest 32.6 worried 43.2 white 34.1 precise 37.7 specific 27.3 quicker 22.3 satan 47.1 religious
6) 31.5 increases 32.4 embarrassed 42.8 black 32.9 exact 35.6 identical 26.8 quick 22.3 god 46.4 christianity
7) 30.7 increase 32.3 angry 36.8 colored 30.7 erroneous 34.6 these 25.9 speeds 22.3 sinister 43.8 fundamentalist
8) 29.2 increasing 31.6 afraid 35.6 orange 30.6 valid 34.4 unusual 25.8 quickly 22.0 immoral 43.5 jewish
9) 28.7 increased 30.4 upset 33.5 grey 30.6 inaccurate 34.1 certain 25.5 speed 21.5 hateful 43.2 evangelical
10) 28.3 lowering 30.3 annoyed 32.4 reddish 29.8 acceptable 32.7 various 24.3 easy 21.3 sadistic 41.2 mormon
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1.	frogs	
2.	toad	
3.	litoria	
4.	leptodactylidae	
5.	rana	
6.	lizard	
7.	eleutherodactylus	

litoria	 leptodactylidae	

rana	 eleutherodactylus	

Nearest	words	to		
frog:	
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Bypassing explicit groundingSyntactic Parsing of Natural Language

• Produce the correct syntactic parse tree for a 
sentence.

• Train and test on Penn Treebank with tens 
of thousands of manually parsed sentences.

Task: Generate the correct syntactic tree of a sentence



Bypassing explicit grounding

• Input: A sentence

• Output: The syntactic tree

• Supervision: Large scale corpora human annotated with syntactic 
parse trees,  e.g., Penn Treebank 

• Model examples: Neural syntactic parsers, e.g., Grammar as a 
Foreign Language, where an attention based seq-to-seq model 
maps a sentence to each syntactic tree, expressed in a DFS 
format 

Task: Generate the correct syntactic tree of a sentence



Recurrent	Neural	Networks!

2/2/17

• RNNs	tie	the	weights	at	each	time	step	

• Condition	the	neural	network	on	all	previous	words	

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Recurrent Neural Networks!
• RNNs tie the weights at each time step

• Condition the neural network on all previous words

Slide adapted from Richard Socher
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Recurrent	Neural	Network	language	model

2/2/17

Given	list	of	word	vectors:	

At	a	single	time	step:

xt ht

ßà  

Recurrent Neural Network Language Model

Slide adapted from Richard Socher



Recurrent	Neural	Network	language	model

Main	idea:	we	use	the	same	set	of	W	weights	at	all	time	
steps!	

Everything	else	is	the	same:	

	 				is	some	initialization	vector	for	the	hidden	layer	
at	time	step	0	

								is	the	column	vector	of	L	at	index	[t]	at	time	step	t

2/2/17

Recurrent Neural Network Language Model
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Recurrent	Neural	Network	language	model

2/2/17

				 							is	a	probability	distribution	over	the	vocabulary	

Same	cross	entropy	loss	function	but	predicting	words	
instead	of	classes

Recurrent Neural Network Language Model
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Bidirectional	RNNs

2/2/17

Problem:	For	classification	you	want	to	incorporate	
information	from	words	both	preceding	and	following	

Ideas?

 Bidirectional RNNs
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GRUs	

23	

•  Standard	RNN	computes	hidden	layer	at	next	<me	step	
directly:	

•  GRU	first	computes	an	update	gate	(another	layer)	
based	on	current	input	word	vector	and	hidden	state	

•  Compute	reset	gate	similarly	but	with	different	weights	

 GRUs
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GRUs	

24	

•  Update	gate		

•  Reset	gate	

•  New	memory	content:	
If	reset	gate	unit	is	~0,	then	this	ignores	previous	
memory	and	only	stores	the	new	word	informa<on		

•  Final	memory	at	<me	step	combines	current	and	
previous	<me	steps:			

 GRUs
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GRU	intui8on	

26	

•  If	reset	is	close	to	0,		
ignore	previous	hidden	state	
à	Allows	model	to	drop		
informa<on	that	is	irrelevant	
in	the	future	

•  Update	gate	z	controls	how	much	of	past	state	should	
ma[er	now.	

•  If	z	close	to	1,	then	we	can	copy	informa<on	in	that	unit	
through	many	<me	steps!	Less	vanishing	gradient!	

•  Units	with	short-term	dependencies	ooen	have	reset	
gates	very	ac<ve	

 GRU Intuition
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Long-short-term-memories	(LSTMs)	

28	

•  We	can	make	the	units	even	more	complex	

•  Allow	each	<me	step	to	modify		

•  Input	gate	(current	cell	ma[ers)	

•  Forget	(gate	0,	forget	past)	

•  Output	(how	much	cell	is	exposed)	

•  New	memory	cell	

•  Final	memory	cell:	

•  Final	hidden	state:		

 Long-short-term-memories (LSTMs)
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RNNs

• In the models we have seen so far, the output labels align with the 
input (word) sequence.

• What if the inout and output sequences have different lengths? Q: 
example tasks?



Modern Sequence Models for NMT
[Sutskever et al. 2014, cf. Bahdanau et al. 2014, et seq.]

am a student _ Je suis étudiant

Je suis étudiant _

I

Encoder Decoder

9

Modern Sequence Models for NMT
Sutskever et al. 2014, fc. Bahdanau et al. 2014, et seq.
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The      protests  escalated    over         the      weekend   <EOS>

Modern Sequence Models for NMT
[Sutskever et al. 2014, cf. Bahdanau et al. 2014, et seq.]

Encoder:
Builds up 
sentence 
meaning 

Source 
sentence

Translation 
generated

Feeding in 
last word

A deep recurrent neural network

Decoder

Modern Sequence Models for NMT
Sutskever et al. 2014, fc. Bahdanau et al. 2014, et seq.
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Le chat assis sur le tapis.

The cat sat on the mat.?

Encoder

Y

Conditional Recurrent Language ModelConditional Recurrent Language Model



Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence

First we convert the syntactic tree into a sequence 



Bypassing explicit grounding

Task: Generate the correct syntactic tree of a sentence



Bypassing explicit groundingSyntactic Parsing of Natural Language

• Produce the correct syntactic parse tree for a 
sentence.

• Train and test on Penn Treebank with tens 
of thousands of manually parsed sentences.

Task: Generate the correct syntactic tree of a sentence

These models do not explicitly know how meatballs and chopsticks look like, or 
their explicit affordances, however, they do learn implicitly their affordances, by 
looking at large amounts of text. Is such implicit understanding enough? 



Bypassing explicit grounding

• Input: A passage of text, and a set of questions regarding the 
passage

• Output: the desired answers

• Supervision: from pairs of (passage+questions, ground truth 
answers)

• Model examples: Memory networks, dynamic memory networks, 
(gated) attention readers etc. 

Task: Reading Comprehension



Dynamic	Memory	Network
Dynamic Memory Network

Slide adapted from Richard Socher



The	Modules:	Input

Standard	GRU.	The	last	hidden	state	of	each	sentence	is	accessible.	

 The Modules: Input

Slide adapted from Richard Socher



Further	Improvement:	BiGRU Further Improvement: BiGRU

Slide adapted from Richard Socher



The	Modules:	Question The Modules: Question

Slide adapted from Richard Socher



The	Modules:	Episodic	Memory

	

Last	hidden	state:	mt

 The Modules: Episodic Memory

Slide adapted from Richard Socher



The	Modules:	Episodic	Memory

• Gates	are	activated	if	sentence	relevant	to	the	
question	or	memory	

• When	the	end	of	the	input	is	reached,	the	relevant	
facts	are	summarized	in	another	GRU

	

 The Modules: Episodic Memory
• Gates are activated in sentence relevant to the 

question or memory.

• When the end of the input is reached, the relevant 
facts are summarized in another GRU

Slide adapted from Richard Socher



The	Modules:	Episodic	Memory
• If	summary	is	insufficient	to	answer	the	question,	
repeat	sequence	over	input

 The Modules: Episodic Memory
If summary is insufficient to answer the 
question, repeat sequence over input.

Slide adapted from Richard Socher



The	Modules:	Answer
 The Modules: Answer

Slide adapted from Richard Socher



Bypassing explicit grounding

We circumvent grounding by using large amounts of 
supervised  training data.  

Not only for syntactic parsing, reading 
comprehension, but for sense disambiguation, for 

POS tagging, semantic role labelling etc.



Children do not Learn Language 
from Supervised Data

10

Penn 
Treebank

Propbank Senseval
Data

Semeval
Data

Children Do Not Learn Language from Supervised Data

Slide adapted from Raymond Mooney



Children Do Not Learn Language from Raw Text

Unsupervised language learning is difficult 
and not an adequate solution since much 
of the requisite semantic information is not 

in the linguistic signal. 



Children do not learn language from television

Simply aligned visual and 
linguistic representations do not 
support learning in infants. Yet, 
all image captioning and visual 
question answering models work 
learn from dataset of such 
aligned representations.
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Learning Language 
from Perceptual Context

• The natural way to learn language is to perceive 
language in the context of its use in the physical and 
social world.

• This requires inferring the meaning of utterances from 
their perceptual context. 

That’s a nice
green block you 

have there!

• The natural way to learn language is to perceive language 
in the context of its use in the physical and social world.

• This requires inferring the meaning of utterances from 
their perceptual context. 

Learning Language from Perceptual Context

Slide adapted from Raymond Mooney



Problem: Dataset collection!

• Supervision is the bottleneck! Is much harder to have robots 
wondering around interacting with things and humans giving them 
sparse linguistic rewards. 

• We will visit in the course many efforts/shortcut/solutions to 
supervision and models researchers have come up thus far. We 
definitely do not need to follow the embodiment solution, if we can 
do without it.



What is wrong with ungrounded language?Statistical/Neural Machine Translation
A marvelous use of big data but….

1519�600�"��	��"���$��� �
	�!#�����$����
��������
In 1519, six hundred Spaniards landed in Mexico to conquer the Aztec Empire with a 
population of a few million. They lost two thirds of their soldiers in the first clash.

translate.google.com (2009): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the first two-thirds of soldiers against their loss.
translate.google.com (2011): 1519 600 Spaniards landed in Mexico, millions of people to 
conquer the Aztec empire, the initial loss of soldiers, two thirds of their encounters.
translate.google.com (2013): 1519 600 Spaniards landed in Mexico to conquer the Aztec 
empire, hundreds of millions of people, the initial confrontation loss of soldiers two-thirds.
translate.google.com (2014/15/16): 1519 600 Spaniards landed in Mexico, millions of 
people to conquer the Aztec empire, the first two-thirds of the loss of soldiers they clash.

translate.google.com (2017): In 1519, 600 Spaniards landed in Mexico, to conquer the 
millions of people of the Aztec empire, the first confrontation they killed two-thirds.



What is wrong with ungrounded language?

…Because the symbols are ungrounded, they cannot, in principle, capture the

meaning of novel situations. In contrast, (human) participants in three experiments found it trivially easy to
discriminate between descriptions of sensible novel situations (e.g., using a newspaper to protect
one’s face from the wind) and nonsense novel situations (e.g., using a matchbook to protect one’s face
from the wind). These results support the Indexical Hypothesis that the meaning of a sentence is
constructed by (a) indexing words and phrases to real objects or perceptual, analog symbols; (b)
deriving affordances from the objects and symbols; and (c) meshing (coordinating)  the affordances under the
guidance of syntax.

Cosine vector similarities of sentences, defined as the avg of the vectors of their 
word constituents, failed to detect coherent versus not coherent stories, while 
humans succeeded.



What is wrong with ungrounded language?



Word meaning in a grounded Language (Glenberg and 
Robertson 1999)

The meaning of a particular situation for a particular animal is the coordinated 
set of actions available to that animal in that situation.  
For example, a chair affords sitting to beings with humanlike bodies, but it does 
not afford sitting for elephants. A chair also affords protection against snarling 
dogs for an adult capable of lifting the chair into a defensive position, but not 
for a small child.  

The set of actions depends on the individual’s learning history, including 
personal experiences of actions and learned cultural norms for acting. 
Thus, a chair on display in a museum affords sitting, but that action is blocked 
by cultural norms. 

Third, the set of actions depends on the individual’s goals for action. 
A chair can be used to support the body when resting is the goal, and it can be 
used to raise the body when changing a light bulb is the goal.

Meshing affordances,
experiences, and goals requires that
the various types of actions be integrated in a
manner that respects intrinsic constraints on
bodily activity that arise from biology and physics.
That is, in a real body not all actions can be
combined. For example, a real human body
cannot simultaneously sit and jump, although it
can sit and eat or sit and swing its legs. The
various components of meaning (affordances,
experiences, and goals) can be meshed because
they are all realized in the domain of bodily
activity rather than in abstract, amodal, arbitrary
representations. When affordances, experiences,
and goals are successfully meshed, they
form a coherent, doable, and envisionable set of
actions: the individual’s meaningful construal



Word meaning in a grounded Language (Glenberg and 
Robertson 1999)

 The meaning of a word is not given by its relations to other words and other
abstract symbols. Instead, the meaning of words in sentences is emergent: 
Meaning emerges from the mesh of affordances, learning history,
and goals. Thus the meaning of the word “chair” is not fixed: A chair can be 
used to sit on, or as a step stool, or as a weapon. Depending on our learning 
histories, it might also be useful in a balancing act or to protect us from
lions in a circus ring. A newspaper can be read, but it can also serve as a 
scarf.

Thus, language comprehension according to this theory, is closely 
connected to learning affordances and Physics of the world.

Meshing affordances,
experiences, and goals requires that
the various types of actions be integrated in a
manner that respects intrinsic constraints on
bodily activity that arise from biology and physics.
That is, in a real body not all actions can be
combined. For example, a real human body
cannot simultaneously sit and jump, although it
can sit and eat or sit and swing its legs. The
various components of meaning (affordances,
experiences, and goals) can be meshed because
they are all realized in the domain of bodily
activity rather than in abstract, amodal, arbitrary
representations. When affordances, experiences,
and goals are successfully meshed, they
form a coherent, doable, and envisionable set of
actions: the individual’s meaningful construal



What is wrong with current Visual-language ModelsGenerative Model Training 
for Grounded Language
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What is wrong with current Visual-language Models



What is wrong with current Visual-language Models

Text-guided attention models for image captioning



What is wrong with current Visual-language Models

Dense captioning events in Videos



What is wrong with current Visual-language Models

Show attend and tell: Neural Image Caption Generation with Visual Attention



What is wrong with current Visual-Language Models

Current Visual-Language models still do not reason about affordances and 
Physics. 

They do not easily generalize to ``novel” situations. 

Their success depends on similarity of the test set to the training data. 



Language grounding as mental simulation
William James wrote that the power to evaluate sameness “is the very keel and backbone of
our thinking” (1890, p. 459). Sameness matters because while no two entities or experiences are
ever exactly the same, we must nevertheless treat them as the same lest we suffer the same fate
as Borges’s Funes who, perceiving each event as a distinct entity was “disturbed that a dog at
three-fourteen (seen in profile) should have the same name as the dog at three-fifteen (seen from
the front)” (Borges 1942/ 1999, p. 136). Without the ability to evaluate sameness, there are no
categories (indeed, one can think of categorization as the representation of sameness in
We don’t need language for learning to categorize two views of a dog as both being of a dog
(though see Collins & Curby, 2013), but language nevertheless plays an important and
sometimes critical role in learning to selectively represent items in a way that promotes their

On this view, there is no need for a language of thought. It’s not that we think 
“in” language. Rather, language directly interfaces with the mental 
representations, helping to form the (approximately) compositional, abstract 
representations. Mental simulations for “You handed Andy the pizza” and “Andy 
handed you the pizza” are measurably different even though they contain the 
same words (Glenberg & Kaschak, 2002).

Comprehending a word like “eagle” activates visual circuits that
capture the implied shape (Zwaan, Stanfield, & Yaxley, 2002) canonical location 
(Estes, Verges, & Barsalou, 2008), and other visual properties of the object, as 
well as auditory information. Words denoting actions like stumble engage motor, 
haptic, and affective circuits (Glenberg & Kaschak, 2002). 
We now know that the neural mechanisms underlying imagining a red circle are 
similar in many respects to the mechanisms that underlie seeing a red circle 
(Kosslyn, Ganis, & Thompson, 2001). Thus maybe vision provides the simulation 
of thought.

We have argued that language is a powerful tool for programming the mind by helping to
activate more abstract/categorical representations by affecting modal mental states.
On this perspective, it becomes critical to view the evolution of language as not simply the
evolution of a communication system. After all, humans already have systems of acoustic and
visual signals—postures, facial expressions, nonverbal vocalizations—that work just fine for
other primates (Burling, 1993). Rather it becomes necessary to view the evolution of language as


