Language to Logical Form with Neural Attention

Li Dong and Mirella Lapata (ACL 2016)

Presenter : Tejas Khot

Semantic Parsing

Natural Language (NL)

Parse

Machine Executable Language

Semantic Parsing - Querying a database

What are the capitals of states bordering Texas?

 λx . capital $(y,x) \land \text{state}(y) \land \text{next_to}(y,\text{Texas})$

Semantic Parsing - Instructing a robot

at the chair, move forward three steps past the sofa

 $\lambda a.pre(a, x.chair(x)) \land move(a) \land len(a, 3)$ $\land dir(a, forward) \land past(a, y.sofa(y))$

Semantic Parsing - Question Answering

뉟

Who are the male actors in Titanic?

Parser

 $\overset{\bullet}{\Sigma} \begin{array}{c} \lambda x. \quad \exists y. \quad \text{gender}(\mathsf{MALE}, x) \land \\ \mathsf{cast}(\mathsf{TITANIC}, x, y) \end{array}$

Titanic

1997 · Drama film/Romance · 3h 30m

7.7/10 · IMDb

88% · Rotten Tomatoes

James Cameron's "Titanic" is an epic, action-packed romance set against the ill-fated maiden voyage of the R.M.S. Titanic; the pride and joy of the White Star Line and, at the time, the larg... More

Initial release: November 18, 1997 (London)

Director: James Cameron

Featured song: My Heart Will Go On

Cast

Leonardo DiCaprio Jack Dawson

Kate Winslet Rose DeWitt Bukater

Billy Zane Caledon Hockley

Gloria Stuart Rose DeWitt Bukater

Kathy Bates Molly Brown

Supervised Approaches

Induce parsers from sentences paired with logical forms

Question

Who are the male actors in Titanic?

Logical Form

 λx . $\exists y$. gender(MALE, x) \wedge cast(TITANIC, x, y)

- Parsing (Ge and Mooney, 2005; Lu et al., 2008; Zhao and Huang, 2015)
- Inductive logic programming (Zelle and Mooney, 1996; Tang and Mooney, 2000; Thomspon and Mooney, 2003)
- Machine translation (Wong and Mooney, 2006; Wong and Mooney, 2007; Andreas et al., 2013)
- CCG grammar induction (Zettlemoyer and Collins, 2005; Zettle- moyer and Collins, 2007; Kwiatkowski et al., 2010; Kwiatkowski et al., 2011)

Indirect Supervision

Induce parsers from questions paired with side information

Question

Who are the male actors in Titanic?

Answer

{DICAPRIO, BILLYZANE ...}

- Answers to questions (Clarke et al., 2010; Liang et al., 2013)
- System demonstrations (Chen and Mooney, 2011; Goldwasser and Roth, 2011; Artzi and Zettlemoyer, 2013)
- Distant supervision (Cai and Yates, 2013; Reddy et al., 2014)

Indirect Supervision

Induce parsers from questions paired with side information

Question

Who are the male actors in Titanic?

```
Logical Form \lambda x. \exists y. gender(MALE,x) \land cast(TITANIC,x,y)
```

Answer

{DICAPRIO, BILLYZANE ...}

- Answers to questions (Clarke et al., 2010; Liang et al., 2013)
- System demonstrations (Chen and Mooney, 2011; Goldwasser and Roth, 2011; Artzi and Zettlemoyer, 2013)
- Distant supervision (Cai and Yates, 2013; Reddy et al., 2014)

In general

Developing semantic parsers requires linguistic expertise!

- high-quality lexicons based on underlying grammar formalism
- manually-built templates based on underlying grammar formalism
- grammar-based features pertaining to Logical Form and Natural Language
- Domain- and representation-specific!

Goal: All Purpose Semantic Parsing

Question

Who are the male actors in Titanic?

Logical Form

 λx . $\exists y$. gender(MALE, x) \wedge cast(TITANIC, x, y)

Goal: All Purpose Semantic Parsing

Question

Who are the male actors in Titanic?

Logical Form

 λx . $\exists y$. gender(MALE, x) \wedge cast(TITANIC, x, y)

- Learn from NL descriptions paired with meaning representations
- Use minimal domain (and grammar) knowledge
- Model is general and can be used across meaning representations

Problem formulation

Model maps natural language input $q = x_1 \cdots x_{|q|}$ to a logical form representation of its meaning $a = y_1 \cdots y_{|a|}$.

$$p\left(a|q
ight) = \prod_{t=1}^{|a|} p\left(y_t|y_{< t},q
ight)$$
 where $y_{< t} = y_1 \cdots y_{t-1}$

- **Encoder** encodes natural language input *q* into a vector representation
- **Decoder** generates $y_1, \dots, y_{|a|}$ conditioned on the encoding vector.
- Vinyals et al., (2015a,b), Kalchbrenner and Blunsom (2013), Cho et al., (2014), Sutskever et al., (2014), Karpathy and Fei-Fei, (2015)

Encoder Decoder Framework

(Kalchbrenner and Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;)

Sequence-to-Sequence (Seq2Seq) Model

$$\begin{aligned} \mathbf{h}_t^l &= \mathsf{LSTM}\left(\mathbf{h}_{t-1}^l, \mathbf{h}_t^{l-1}\right) & \quad \mathbf{h}_t^0 &= \mathbf{W}_q \mathbf{e}(x_t) & \quad \mathbf{h}_t^0 &= \mathbf{W}_a \mathbf{e}(y_{t-1}) \\ & \quad p\left(y_t | y_{< t}, q\right) &= \operatorname{softmax}\left(\mathbf{W}_o \mathbf{h}_t^L\right)^\mathsf{T} \mathbf{e}\left(y_t\right) \end{aligned}$$

Drawbacks of Seq2Seq Model

- Ignore the hierarchical structure of logical forms
- More long distance dependency during decoding

Sequence-to-Tree (Seq2Tree) Model

Define a "nonterminal" <n> token to indicate subtrees in decoder

Seq2Tree Decoder

Parent Feeding Connections

- A SEQ2TREE decoding example for the logical form "A B (C)"
- Hidden vector of the parent nonterminal is concatenated with the inputs and fed to the LSTM.
- $p(a|q) = p(y_1y_2y_3y_4|q)p(y_5y_6|y_{\leq 3},q)$

<u>Attention Mechanism - Soft Alignment</u>

(Bahdanau et al., 2015; Luong et al., 2015b; Xu et al., 2015)

Training and Inference

Our goal is to maximize the likelihood of the generated logical forms given natural language utterances as input.

$$\operatorname{minimize} - \sum_{(q,a) \in \mathscr{D}} \log p(a|q)$$

where \mathscr{D} is the set of all natural language-logical form training pairs

At test time, we predict the logical form for an input utterance q by:

$$\hat{a} = \underset{a'}{\operatorname{arg\,max}} p\left(a'|q\right)$$

- Iterating over all possible a's to obtain the optimal prediction is impractical
- Probability p(a|q) decomposed so that we can use greedy/beam search.

Argument Identification

- Many LFs contain named entities and numbers aka rare words.
- Does not make sense to replace them with special unknown word symbol.
- Identify entities and numbers in input questions and replace them with their type names and unique IDs.

```
jobs with a salary of  40000

job(ANS), salary_greater_than(ANS, 40000 , year)
```

- Pre-processed examples are used as training data.
- After decoding, a post-processing step recovers all $\underline{type_i}$ markers to corresponding logical constants.

Argument Identification

- Many LFs contain named entities and numbers aka rare words.
- Does not make sense to replace them with special unknown word symbol.
- Identify entities and numbers in input questions and replace them with their type names and unique IDs.

```
jobs with a salary of numo
job(ANS), salary_greater_than(ANS, numo, year)
```

- Pre-processed examples are used as training data.
- After decoding, a post-processing step recovers all $\underline{type_i}$ markers to corresponding logical constants.

Semantic Parsing Datasets

Length	Jobs
9.80	what microsoft jobs do not require a bscs?
22.90	<pre>answer(company(J,'microsoft'),job(J),not((req_deg(J,'bscs'))))</pre>

Length	GEO
7.60	what is the population of the state with the largest area?
19.10	(population:i (argmax \$0 (state:t \$0) (area:i \$0)))

Length	ATIS
11.10	dallas to san francisco leaving after 4 in the afternoon please
28.10	(lambda \$0 e (and (>(departure_time \$0) 1600:ti) (from \$0 dal-
	las:ci) (to \$0 san_francisco:ci)))

- JOBS: queries to job listings; 500 training, 140 test instances.
- GEO: queries US geography database; 680 training, 200 test instances.
- ATIS: queries to a flight booking system; 4,480 training, 480 dev, 450 test.

IF-This-Then-That

- turn on my lights when I arrive home
- text me if the door opens
- remind me to drink water if I've been at a bar for more than two hours

Archive your missed calls from Android to Google Drive

Semantic Parsing Datasets

Length	IFTTT
6.95	turn on heater when temperature drops below 58 degree
21.80	TRIGGER: Weather - Current_temperature_drops_below - ((Tem-
	perature (58)) (Degrees_in (f)))
	ACTION: WeMo_Insight_Switch - Turn_on - ((Which_switch? ("")))

- if-this-then-that recipes from the IFTTT website (Quirk et al., 2015)
- Recipes are simple programs with exactly one trigger and one action
- 77,495 training, 5,171 development, and 4,294 test examples
- IFTTT programs are represented as abstract syntax trees; NL descriptions provided by users.

Experimental Results

Experimental Results

<u>Attention Map : Seq2Tree</u>

what is the earliest flight from ci0 to ci1

what is the highest elevation in the co0

Error Analysis

- Under-Mapping
 - Keeping track of attention history
 - Esp. for longer sequences
- > Argument Identification
 - Disambiguate arguments based on context
 - o Eg: 6'0 clock
- > Rare Words
 - Learn word embeddings on unannotated text data
 - Esp. a problem for smaller datasets

What have we learned?

- Encoder-decoder neural network model for mapping natural language descriptions to meaning representations
- TREE2SEQ and attention improves performance
- Model general and could transfer to other tasks/architectures
- Future work: learn a model from question-answer pairs without access to target logical forms.

Thanks!

