Pointer Networks: Handling variable size output dictionary
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* Qutputs are discrete and correspond to positions in the input.
Thus, the output "dictionary" varies per example.

* Q: Can we think of cases where we need such dynamic size
dictionary?



Pointer Networks: Handling Variable Size Output Dictionary

P,

(a) Input P = {P;,..., P}, and the output se- (b) Input P = {P;. ..., Ps}, and the output C* =

quence C¥ = {=,2,4,3,5,6,7,2, <} represent- {=,(1,2,4),(1,4,5),(1,3,5),(1,2,3),<} repre-
ing its convex hull. senting its Delaunay Triangulation.



Pointer Networks: Handling Variable Size Output Dictionary
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Pointer Networks: Handling Variable Size Output Dictionary

* Fixed-Size Dictionary

uj- — ol tanh(Wie; + Wad;) 7€ (1,...,n)
ab = softmax(u}) 7€ (l,...,n)
T
d;, = Z a;e;
1=1

the updated decoder hidden state!, d_i,d’_i are concatenated
and feed into a softmax over the fixed size dictionary

 Dynamic Dictionary

u' = o' tanh(Wyie; + Wad;) j € (1,....n)
p(Ci|Cy,...,Ci—1,P) = softmax(u')

the decoder hidden state is used to selected the location of the
iInput via interaction with the encoder hidden states e_|



Pointer Networks: Handling Variable Size Output Dictionary
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(d) Ptr-Net, m=5-50, n=500 (e) Ptr-Net , m=50, n=50 (f) Ptr-Net , m=5-20, n=20



Pointer Networks: Handling Variable Size Output Dictionary

METHOD TRAINED n n ACCURACY AREA
LSTM [1] 50 50 1.9% FAIL
+ATTENTION [5] 50 50 38.9% 99.7 %
PTR-NET 50 50 12.6% 99.9%
LSTM [1] 5 5 87.7% 99.6%
PTR-NET 5-50 5 92.0% 99.6%
LSTM [1] 10 10 29.9% FAIL
PTR-NET 5-50 10 87.0% 99.8%
PTR-NET 5-50 50 69.6% 99.9%
PTR-NET 5-50 100 50.3% 99.9%
PTR-NET 5-50 200 22.1% 99.9%
PTR-NET 5-50 500 1.3% 99.2%




Pointer Networks: Handling Variable Size Output Dictionary

Table 2: Tour length of the Ptr-Net and a collection of algorithms on a small scale TSP problem.

n OPTIMAL Al A2 A3 PTR-NET
S 2.12 2.18 2,12 2.12 2.12
10 2.87 3.07 2.87 2.87 2.88
50 (A1 TRAINED) N/A 6.46 5.84 5.79 6.42
50 (A3 TRAINED) N/A 6.46 5.84 5.79 6.09
S (5-20 TRAINED) 2.12 2.18 2,12 2.12 2.12

10 (5-20 TRAINED) 2.87 3.07 2.87 2.87 2.87
20 (5-20 TRAINED) 3.83 4.24 3.86 3.85 3.88
25 (5-20 TRAINED) N/A 471 4.27 4.24 4.30
30 (5-20 TRAINED) N/A 5.11  4.63 4.60 4.72
40 (5-20 TRAINED) N/A 5.82 5.27 5.23 5.91
50 (5-20 TRAINED) N/A 6.46 5.84 5.79 7.66




Key-variable memory

We use similar indexing mechanism to index location in the key variable
memory, during decoding, when we know we need to pick an argument,
as opposed to function name. All arguments are stored in such memory.
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From Words to Phrases

 We have already discussed word vector representations that
"capture the meaning" of word by embedding them into a low-
dimensional space where semantic similarity is preserved.

* But what about longer phrases? For this lecture, understanding
of the meaning of a sentence is representing the phrase as a
vector in a structured semantic space, where similar sentences are
nearby, and unrelated sentences are far away.



Building on Word Vector Space Models
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The country of my birth vs. The place where | was born

How can we represent the meaning of longer phrases? By mapping
them into the same vector space as words!

Slide adapted from Manning-Socher



From Words to Phrases

 We have already discussed word vector representations that
"capture the meaning" of word by embedding them into a low-
dimensional space where semantic similarity is preserved.

* But what about longer phrases? For this lecture, understanding
of the meaning of a sentence is representing the phrase as a
vector in a structured semantic space, where similar sentences are
nearby, and unrelated sentences are far away.

« Sentence modeling is at the core of many language
comprehension tasks sentiment analysis, paraphrase detection,
entailment recognition, summarization, discourse analysis,
machine translation, grounded language learning and image
retrieval



From Words to Phrases

* How can we know when larger units of a sentence are
similar in meaning?

The snowboarders is leaping over a mogul.
A person on a snowboard jumps into the air.

* People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

"A small crowd quietly enters the historical church”.

Slide adapted from Manning-Socher
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From Words to Phrases

* How can we know when larger units of a sentence are
similar in meaning?

-+ The snowboarders is leaping over a mogul.
- A person on a snowboard jumps into the air.

* People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

"A small crowd quietly enters the historical church”.



From Words to Phrases: 4 models

* Bag of words: Ignores word order, simple averaging of word
vectors in a sub-phrase. Can’t capture differences in meaning as a
result of differences in word order, e.g., "cats climb trees" and
"trees climb cats"” will have the same representation.

 Sequence (recurrent) models, e.g., LSTMs: The hidden vector of
the last word is the representation of the phrase.

e Tree-structured (recursive) models: compose each phrase from its
constituent sub-phrases, according to a given syntactic structure
over the sentence

 (Convolutional neural networks

Q: Does semantic understanding improve with grammatical
understanding so that recursive models are justified?



From Words to Phrases: 4 models

* Bag of words: Ignores word order, simple averaging of word
vectors in a sub-phrase. Can’t capture differences in meaning as a
result of differences in word order, e.g., "cats climb trees" and
"trees climb cats"” will have the same representation.

 Sequence models, e.g., LSTMs: The hidden vector of the last word
IS the representation of the phrase.

e Tree-structured (recursive) models: compose each phrase from its
constituent sub-phrases, according to a given syntactic structure
over the sentence

 (Convolutional neural networks

Q: Does semantic understanding improve with grammatical
understanding so that recursive models are justified?



Recursive Neural Networks

oo p1=8(b,c)
© ©

1) QO
not very good ...

a b C

Given a tree and vectors for the leaves, compute bottom-up
vectors for the intermediate nodes, all the way to the root, via
compositional function g.




How should we map phrases into a vector space”?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

the country  of my

x the country of my birth
x the place where | was born

Jointly learn parse trees and
compositional vector
representations

Parsing with compositional vector
grammars, Socher et al.

Slide adapted from Manning-Socher



Constituency Sentence Parsing




| earn Structure and Representation
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Recursive vs. Recurrent Neural Networks

Q: what is the difference in the
iIntermediate concepts they
build?
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the country  of birth

Slide adapted from Manning-Socher




Recursive vs. Recurrent Neural Networks

5

Recursive neural nets require a
parser 1o get tree structure.

45

0.4
0.3

the country  of birth

Recurrent neural nets cannot capture
phrases without prefix context and often 3 5

capture too much of last words in final
vector. However, they do not need a parser, ~
and they are much preferred in current [ ] [ ] [ ] [4 5] [2-3

literature at least. 3'6‘

the country  of my birth



Recursive Neural Networks for Structure Prediction

* Inputs: Two candidate children's representations

* QOutputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

]

o, 8
b4

mat.

Slide adapted from Manning-Socher



Recursive Neural Network (Version

score = U'p

Neural parent p
Network | p= tanh(W[?]+ b),
2

Same W parameters at all nodes
of the tree

D onegn

Slide adapted from Manning-Socher



Parsing a Sentence
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Bottom-up beam search
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The cat the mat.

Slide adapted from Manning-Socher



Parsing a Sentence

Bottom-up beam search

Slide adapted from Manning-Socher



Parsing a Sentence

Slide adapted from Manning-Socher



Cost function

 The score of a tree is computed
by the sum of the parsing 1.3 [
decision scores at each node:

s(ty) = ) sn

nenodes(y)

w 00
S’

8 3
5 3

* XIS sentence; yis parse tree



Cost function

* Max-margin objective:

J = Zs(xia%’) — max_(s(x;,y) +A(y,y))
i yeA(x;)
parse trees resulting from beam search

 The loss A(y, yi) penalized all incorrect decisions



Backpropagation Through Structure

 We update parameters, and sample new trees for every example
periodically.O

 |n practice, first we compute the top best trees from a PCFG
(probabilistic context free grammar), and then we use those trees to
learn the parameters of the recursive net, using backdrop through
structure (similar to backdrop through time).

* This means the trees for each example are not updated during
parameter learning

 |tis like a cascade



RecursiveNN Version 1: Discussion

Single weight matrix RecursiveNN could capture some
phenomena, but not adequate for more complex, higher order
composition and parsing long sentences.

* There is no real interaction between the input words.

* The composition function is the same for all syntactic categories,
punctuation, etc.

Slide adapted from Manning-Socher



Version 2: Syntactically-Untied RNN

* We use the discrete syntactic categories of the children to
choose the composition matrix.

A TreeRNN can do better with different composition matrix for
different syntactic environments.

* This gives better results

A,B,C are part of speech tags

Standard Recursive Neural Network Syntactically Untied Recursive Neural Network

=)
{P‘” [b]ﬂ

Slide adapted from Manning-Socher




Version 2: Syntactically-Untied RNN

* Problem: Speed. Every candidate score in beam search
needs a matrix-vector product.

» Solution: Compute score only for a subset of trees coming
from a simpler, faster model (PCFQG)

- Prunes very unlikely candidates for speed

- Provides coarse syntactic categories of the children for
each beam candidate.

« Compositional Vector Grammar = PCFG + TreeRNN

Slide adapted from Manning-Socher



Version 2: Syntactically-Untied RNN

« Scores at each note computed by combination of PCFG
and SU-RNN:

S (p(l)> — (*l,?(B’(?))T]_')('l) —|— log P(Pl — B (Y)

* Interpretation: Factoring discrete and continuous parsing in
one model:

P((Pr,p1) = (B,b)(C,c))
:P(p1 — b C|P1 — B C)P(Pl — B C)

Slide adapted from Manning-Socher



EXperiments

Standard WSJ split, labeled F1
Based on simple PCFG with fewer states

Fast pruning of search space, few matrix-vector products
3.8% higher F1, 20% faster than Stanford factored parser

Parser | TestAllSentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1



SU-RNN/CVG

 Learns soft notion of head words

+ Initialization: W) = 0.5[1,,xnLnxnOnx1] + €

CC: coordinating conjunction, e.g., “and” PRP$: possessive pronoun, e.g.,” my”, “"his”

20 30 40 50

Learning relative weighting is the best you can do with such linear interactions, Wic1+W2c?2

Part of speech tags: https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/



https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

SU-RNN/CVG
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Part of speech tags: https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/



https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

Phrase similarity in Resulting Vector Representation

» All the figures are adjusted for seasonal variations
- All the numbers are adjusted for seasonal fluctuations
- All the figures are adjusted to remove usual seasonal patterns

» Knight-Ridder wouldn't comment on the offer
- Harsco declined to say what country placed the order
- Coastal wouldn't disclose the terms

« Sales grew almost 7% to SUNK m. from SUNK m.
- Sales rose more than 7% to $94.9 m. from $88.3 m.
- Sales surged 40% to UNK b. yen from UNK b.

Slide adapted from Manning-Socher



SU-RNN Analysis

» Can transfer semantic information from single related example
* Train sentences:

+ He eats spaghetti with a fork.

e Test sentences:

- He eats spaghetti with a spoon.



SU-RNN Analysis

S
NP VP NP
| |
PRP PRP
| VBZ NP
He | /\ He
eats
NP PP
| /\
NTB IN NP
| . | N
spaghetttwyh DT NN
| |
a spoon
< (b) Compositional Vector Grammar
NP VP |
| PRP
PRP
| He
He  vpz NP PP
| |
eats NNS N NP

- n|I otti | /\ )
spaghetti with DT NN

d spoon

(a) Stanford factored parser
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ecats

/////ji\\\\\

VP

NP

N

NP PP
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NNS IN NP

spaghetti  with PRP

meat

/////E\\\\\

VP

TN

VBZ

cats

NP

N

NP PP

| TN
NNS IN NP

spaghetti ~ with NN

|
Slide adapted from M&Hithg-Socher



Lapbeling

 We can use each node's NP
representation as features for

a softmax classifier: Softmax

Layer

p(c|p) softmax(Sp)

* Training similar to model in part
1 with standard cross-entropy
error + scores of composition

Neural

Network

Slide adapted from Manning-Socher



Version 3: Recursive Matrix-Vector Spaces

Before:

p = tanh(W[Cl] + b)
C

* We just saw one way to make the composition function more
powerful was by untying the weights W.

 But what if words act mostly as an operator, e.g. "very" in

very good, thus i do not want to take a weighted sum of the
word vectors, i instead want to amplify ~good” ’s vector.



Version 3: Matrix-Vector RNNs

=08 =Co o)
OO O O
O 0O OO
@ ®) (© o)
very good
(a, A (b,B)
CIDIEY CIDIEY:
OO C N,

Slide adapted from Manning-Socher



Matrix-Vector RNNs

Each word is represented by both a matrix and a vector

p = tanh(W[22]+ b) p = tanh(W[2 1] b)

Recursive Matrix-Vector Model

(@ 0)

I (0 0)- vector
f(Ba, Ab)= e ® /\ .
/\ - matrix

OO
Ba=@e) Ab=ee® 29
ON®, ONO)
C NC ON®)
@® @® o)
very good movie
(a, A (b,B) (c,C)
@)oo Oy ©O o0
ONO©) ®a0 OO0




Matrix-Vector RNNs

p=f<W[igD P:g(AB):wM{g]

pEse Wy € R
Ba=%y Ab=¢ry

CRC OO e _
oo o 0| =P
very good /"\
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Predicting Sentiment Distributions

Good example for non-linearity in language

fairly annoying fairly awesome fairly sad
05 05 05
oal —e—MV-RNN oal —e—MV-RNN oal —o— MV-RNN
| -+=RNN | -+~ RNN | -+~ RNN
0.3r 0.3r 0.3r

not annoying not awesome not sad
05 05- 05 -
oal —e—MV-RNN oal —o—MV-RNN oal ——MV-RNN
| -+~ RNN | ~+=RNN | ~+-RNN
0.3r 03r 0.3r —=—Ground Truth
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i JL T S
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oal —e—MV-RNN oal —o—MV-RNN » oal —o— MV-RNN
| -+=RNN | -+~ RNN | -+~ RNN
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0.2r

0.1F

-----
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Slide adapted from Manning-Socher



Classification of Semantic Relationships

Classifier |Features | F1_

SVM POS, stemming, syntactic patterns 60.1

MaxEnt  POS, WordNet, morphological features, noun 77.6
compound system, thesauri, Google n-grams

SVM POS, WordNet, prefixes, morphological 82.2
features, dependency parse features, Levin
classes, PropBank, FrameNet, NomLex-Plus,
Google n-grams, paraphrases, TextRunner

RNN — 74.8
MV-RNN - 79.1

MV-RNN POS, WordNet, NER 82.4



Problems with MV-RNNs

- Parameters of the model grow quadratically with the size of the vocabulary
(due to matrices)

- Can we find a more economical way to have multiplicative interactions in
recursive networks?

* Recursive tensor networks



Compositional Function

« standard linear function + non-linearity, captures additive
interactions:

plZf(W[ﬁD’m:f(W[ZlD

* matrix/vector compositions (Socher 2011): represent each word
and phrase by both a vector and a matrix. The number of

parameters grows with vocabulary. (pa2.P2)
/\
_ Cb _ b @A) (p.P1)
pl_f<W[Bc]>,P1—f(WM[C]> g
(bB) (c.0)

 Recursive neural tensor networks. Parameters are both the word
vectors as well as then composition tensor V, shared across all
node compositions. Q: what is the dimensionality of V ?

Slide adapted from Manning-Socher



Version 4: Recursive Neural Tensor Networks

Neural Tensor Layer

Slices of Standard
Tensor Layer Layer

\

J

Slide adapted from Manning-Socher



* We train the parameters of the model so that we minimize
classification error at the root node of a sentence (e.g.,
sentiment prediction, does this sentence feel positive or
negative?) or, at many intermediate nodes if such
annotations are available:

E0)=> Y tilogy;+ ||

L J



Evaluation

O
This
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© MOS0 & B
o O wit Ay o © of o .
cleverness other kind intelligent humor

Plus + and minus - indicate sentiment prediction in the

different places of the sentence




Evaluation

» Using a dataset with fine grain sentiment labels for all
(intermediate) phrases

Model Fine-grained Positive/Negative
All Root All Root
NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 79.4
BiNB 71.0 41.9 82.7 83.1
VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4
MV-RNN 78.7 bt 86.8 82.9
RNTN 80.7 45.7 87.6 854

Table 1: Accuracy for fine grained (5-class) and binary
predictions at the sentence level (root) and for all nodes.



Evaluation

» Correctly capturing compositionality of meaning is
important for sentiment analysis due to negations that
reverse the sentiment, e.g., "l didn’t like a single minute of
this film", "the movie was not terrible" etc.

Model Accuracy
Negated Positive ~ Negated Negative
biNB 19.0 27.3
RNN 33.3 45.5
MV-RNN 524 54.6
RNTN 71.4 81.8

Table 2: Accuracy of negation detection. Negated posi-
tive is measured as correct sentiment inversions. Negated
negative is measured as increases in positive activations.

Negated Positive Sentences: Change in Activation

biNB -0.16
RRN -0.34
MV-RNN -0.5
RNTN | -0.57

-0.6 -0.4 -0.2 0.0 0.2 0.4

Negated Negative Sentences: Change in Activation

biNB -0.01
RRN -0.01
MV-RNN +0.01
RNTN +0.35

-0.6 -0.4 -0.2 0.0 0.2 0.4

Figure 8: Change in activations for negations. Only the
RNTN correctly captures both types. It decreases positive
sentiment more when it is negated and learns that negat-
ing negative phrases (such as not terrible) should increase
neutral and positive activations.



Let's go back to vanilla trees and use LSTMs instead of

SINNS

U1 Y2 Y3 Ya

4 4 A : - i

, SN : R \ —> X creates intermediate vectors for prefixes
T xo r3 L4

creates intermediate vectors for sub-

xg T \ + phrases that are grammatically correct
+ 4



RNNS VS LoSTMS

P (W“)xt +UDp,_ |+ bm) ,
hy = tanh (Wazy 4+ Uhy—1 + b) ft=0 (W(f)l’t +UD R + b(f)) ;
0y = O (W(O)xt 4+ U(O)ht_l 4+ b(O)) ’
w; = tanh (W(“)xt F U@, |+ b(“)) ,

ct =1 Ou+ fr ©c1,
ht = o ® tanh(c;),




| STMS vs Tree-LSTMS

What if we use LSTM updates not in a chain but on trees produced by SOA
dependency or constituency parsers?

We use a different forget gate for every child

it =0 (W(i)azt +UD by + b(i)) , = ke;(j) "k

fi=o (W(f)xt D+ b(f)) | iy = o (WO + UDRy 440,
0= o (W(O)azt L U@, b<0>) | fin=0 (W<f>xj + UD Ry + b<f>) ,

w; = tanh (W(“):Ct n U(u)ht—l n b(u)) : 0j =0 (W(O)xj — U(O)izj — b(o)> :

ct =it @ uy+ fr © ¢t u; = tanh (W ®a; + U + b))
ht = oy ® tanh(cy), ¢; =1i; ®u; + Z fik © ck,

keC(j7)
hj =0; © tanh(cj),

&
/@

()
f3




Does children order matter?

child-sum tree LSTMS

ilj: Z h-k,

keC(7)
i, =0 (L-V“)zj +UDh; + b<f)) ,

fix=0 (WU)xj + UDhy, + b(f)) ,
0] =0 ("’V(O).’l?j — U(o)izj + b(o)) ,

u; = tanh (I-'i-"'(")mj + UWh; + b(“)) :

c;=i;0ui+ Y fir®ck
keC(7)

h; = o; ® tanh(¢;),

N-ary tree LSTMS

N
ij=0 (W(‘)a:j +) U by + b(i)) . (9)
=1

N
fix=0 (W(%j +3 UDhje + b(f)) ,

=1

(10)
N

0j =0 (u-f(")a:j +) U hye + b(")) . (11)
=1

N
u; = tanh (W'(“):cj +) UMhje + b(“)) ,
=1

(12)
N

c;=i;0u;+ Y fit® e, (13)
=1

h; = o; ® tanh(c;), (14)

We use Child-sum tree-LSTMs for dependency trees

We use N-ary (in particular binary) tree LSTMs on constituency trees



EXxperiments

Fine-grain and coarse grain sentiment classification
-+ Semantic relatedness of sentences

po(y | {z}5) = softmax (W h; +5)) |

Y; =argm51xz39 (v | {z};).



EXxperiments

 Fine-grain and coarse grain sentiment classification
-+ Semantic relatedness of sentences

Method Fine-grained  Binary
RAE (Socheret al., 2013) 43.2 824
MV-RNN (Socheret al., 2013) 444 829
RNTN (Socheret al., 2013) 45.7 854
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 487 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6
LST™ 464 (1.1) 849 (0.6)
Bidirectional LSTM 49.1 (1.0) &7.5 (0.5
2-layer LSTM 460 (1.3) 863 (0.6)
2-layer Bidirectional LSTM 485 (1.0) 87.2 (1.0)
Dependency Tree-LSTM 484 (04) 857 (04
Constituency Tree-LSTM

— randomly initialized vectors 439 (0.6) 820 (0.5)

— Glove vectors, fixed 497 (04) &7.5 (0.8)

— Glove vectors, tuned 51.0 (0.5) 88.0 (0.3)




EXxperiments

* Fine-grain and coarse grain sentiment classification
-+ Semantic relatedness of sentences

Method Pearson’s r Spearman’s p MSE

Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692

UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550

Meaning Factory (Bjervaet al., 2014) 0.8268 0.7721 0.3224

ECNU (Zhao et al., 2014) 0.8414 - -

Mean vectors 0.7577 (0.0013) 0.6738 (0.0027) 0.4557 (0.0090)
N DT-RNN (Socher et al., 2014) 0.7923 (0.0070) 0.7319 (0.0071) 0.3822 (0.0137)
SDT-RNN (Socher et al., 2014) 0.7900 (0.0042) 0.7304 (0.0076) 0.3848 (0.0074)
LSTM 0.8528 (0.0031) 0.7911 (0.0059) 0.2831 (0.0092)
Bidirectional LSTM 0.8567 (0.0028) 0.7966 (0.0053) 0.2736 (0.0063)
2-layer LSTM 0.8515 (0.0066) 0.7896 (0.0088) 0.2838 (0.0150)
2-layer Bidirectional LSTM 0.8558 (0.0014) 0.7965 (0.0018) 0.2762 (0.0020)
4 6 S 10 12 14 16 18 20 Constituency Tree-LSTM 0.8582 (0.0038) 0.7966 (0.0053) 0.2734 (0.0108)
- - Dependency Tree-LSTM 0.8676 (0.0030) 0.8083 (0.0042) 0.2532 (0.0052)

mean sentence length




From RNNs to CNNSs

* Recurrent neural nets cannot capture phrases without
prefix context.

« Often capture too much of last words in final vector.
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country  of my birth

« Softmax is often only at the last step.



From RNNs to CNNSs

RNN: Get compositional vectors from grammatical phrases
only

CNN: Compute vectors for every possible phrase

Example: "the country of my birth" computes vectors for:

- the country, country of, of my, my birth, the country of,

country of my, of my birth, the country of my, country of
my birth

Regardless of whether each is grammatical - many don't
make sense

Don't need parser

But maybe not very linguistically or cognitively plausible



Relationship between CNN and RNN

CNN RNN

Slide adapted from Manning-Socher



Relationship between CNN and RNN

CNN RNN

A VAN NN

people  there speak slowly people  there speak slowly

representation for EVERY bigram, trigram etc.

Slide adapted from Manning-Socher



From RNNs to CNNSs

 Main CNN idea: What if we compute vectors for every
possible phrase?

 Example: "the country of my birth" computes vectors for:

- the country, country of, of my, my birth, the country of,
country of my, of my birth, the country of my, country of
my birth

* Regardless of whether each is grammatical - not very
linguistically or cognitively plausible



Convolution

* 1D discrete convolution generally:

(f*g)n] Z fln — mlg|m].

m=—NM

« Convolution is great to

extract features from
ir;(ages u EHESESAL
0,1,(/1/1(0 4
« 2D example: 0/0/1|1]1
- Yellow and red numbers 0(0(1]1]0
show filter weights 011(1(0(0
-+ Green shows input Image Convolved

Feature

Slide adapted from Manning-Socher



Single Layer CNN

* A simple variant using one convolutional layer and pooling.
. Word vectors: X; € RF

« Sentence: Xin =X1 OX2@...DXp

. Convolutional filter: w € R

« Could be 2 (as before) higher, e.g. 3:

the country  of my birth

Slide adapted from Manning-Socher



Single Layer CNN

o Convolutional filter: w € R
 Window size h could be 2 (as before) or higher, e.g. 3

* To compute feature for CNN layer:

the country  of my birtdw

Slide adapted from Manning-Socher



Single Layer CNN

* Filter w is applied to all possible windows (concatenated vectors)

« Sentence: Xinp = X1 DXoD...DXp

e All possible windows of length h: {Xlzfm X2:h+15 - - - 7Xn—h—|—1:n}

: —h—+1
. Resultis a feature map: € = [C1,C2,...,Cn_pht1] € RPTT

1.1 2.4

0.4] 2.1] 4 2.3

03 3.3 4.5 3.6 5299999977
the country  of my birth

Slide adapted from Manning-Socher



Single Layer CNN

* Filter wis applied to all possible windows (concatenated vectors)

« Sentence: Xinp = X1 DXoD...DXp

e All possible windows of length h: {Xlzfm X2:h+15 - - - 7Xn—h—|—1:n}

: —h—+1
. Resultis a feature map: € = [C1,C2,...,Cn_pht1] € RPTT

1.1

0.4 2.1 4 23
0.3 3.3 4.5 3.6 [8] [8]
the country  of my birth

Slide adapted from Manning-Socher



Single Layer CNN: Pooling

* New building block: Pooling
* In particular: max-over-time pooling layer

* |dea: Capture most important activation (maximum over time)

* From feature map C = [Cl, Co,. .., Cn—h+1] c RN+l

A

* Pooled single number: C — maX{C}

 But we want more features!



Solution: Multiple Filters

» Use multiple filter weights w
 Useful to have different window sizes h

* Because of max pooling, length of c is irrelevant
c=|c1,co,...,Cn_pi1] € RPIH

* S0 we can have some filters that look at unigrams, bigrams, tri-
grams, 4-grams, eftc.



Classification after one CNN Layer

* First one convolution, followed by one max-pooling
« To obtain final feature vector: z = [¢1,...,¢n]
+ Assuming m filters w

« Simple final softmax layer y = softmax (W(S)z + b)



Classification after one CNN Layer
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n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

n words (possibly zero padded) and each word vector has k dimensions

Slide adapted from Manning-Socher



EXperiments

Model MR | SST-1 | SST-2 | Subj | TREC| CR | MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4
CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 | 89.6
CNN-non-static 81.5 | 48.0 87.2 934 | 93.6 84.3 89.5
CNN-multichannel 81.1 47.4 88.1 93.2 92.2 | 85.0 | 894
RAE (Socher et al., 2011) 7.7 43.2 82.4 — — — 86.4
MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 — — — —
RNTN (Socher et al., 2013) — 45.7 85.4 — — — —
DCNN (Kalchbrenner et al., 2014) — 48.5 86.8 — 93.0 — —
Paragraph-Vec (Le and Mikolov, 2014) — 48.7 | 87.8 — — — —
CCAE (Hermann and Blunsom, 2013) 77.8 — — — — — 87.2
Sent-Parser (Dong et al., 2014) 79.5 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.4 — — 93.2 — 81.8 | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) || 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) || 79.1 — — 93.6 — 81.9 | 86.3
Tree-CRF (Nakagawa et al., 2010) 7.3 — — — — 81.4 | 86.1
CRF-PR (Yang and Cardie, 2014) — — — — — 82.7 —
SVMg (Silva et al., 2011) — — — — 95.0 — —




Beyond a single layer: adaptive pooling

e Narrow vs. wide convolution

« Complex pooling schemes (over / / /
sequences) and deeper — | |
convolutional layers e [ SEwas

(k= 1(s) =5) /////W/\ /L///<//\
/ \ : \
=|mmd] [man

The cat sat on the red mat



