
Pointer Networks: Handling variable size output dictionary

• Outputs are discrete and correspond to positions in the input.
Thus, the output "dictionary" varies per example.

• Q: Can we think of cases where we need such dynamic size
dictionary?

Pointer Networks: Handling Variable Size Output Dictionary

Pointer Networks: Handling Variable Size Output Dictionary

(a) Sequence-to-Sequence (b) Ptr-Net

Pointer Networks: Handling Variable Size Output Dictionary

• Fixed-Size Dictionary

• Dynamic Dictionary

the updated decoder hidden state!, d_i,d’_i are concatenated
and feed into a softmax over the fixed size dictionary

the decoder hidden state is used to selected the location of the
input via interaction with the encoder hidden states e_j

Pointer Networks: Handling Variable Size Output Dictionary

Pointer Networks: Handling Variable Size Output Dictionary

Pointer Networks: Handling Variable Size Output Dictionary

Key-variable memory

We use similar indexing mechanism to index location in the key variable
memory, during decoding, when we know we need to pick an argument,
as opposed to function name. All arguments are stored in such memory.

Recursive/tree structured networks

Language Grounding to Vision and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

 From Words to Phrases

• We have already discussed word vector representations that
"capture the meaning" of word by embedding them into a low-
dimensional space where semantic similarity is preserved.

• But what about longer phrases? For this lecture, understanding
of the meaning of a sentence is representing the phrase as a
vector in a structured semantic space, where similar sentences are
nearby, and unrelated sentences are far away.

Building	on	Word	Vector	Space	Models	

11	

x2	

x1				0								1						2					3					4						5					6					7					8						9					10	

5	

4	

3	

2	

1	
Monday	

9	
2	

Tuesday	 9.5	
1.5	

By	mapping	them	into	the	same	vector	space!	

1	
5	

1.1	
4	

the	country	of	my	birth	
		the	place	where	I	was	born	

How	can	we	represent	the	meaning	of	longer	phrases?	

France	 2	
2.5	

Germany	 1	
3	

 Building on Word Vector Space Models

How can we represent the meaning of longer phrases? By mapping
them into the same vector space as words!

The country of my birth vs. The place where I was born

Slide adapted from Manning-Socher

 From Words to Phrases

• We have already discussed word vector representations that
"capture the meaning" of word by embedding them into a low-
dimensional space where semantic similarity is preserved.

• But what about longer phrases? For this lecture, understanding
of the meaning of a sentence is representing the phrase as a
vector in a structured semantic space, where similar sentences are
nearby, and unrelated sentences are far away.

• Sentence modeling is at the core of many language
comprehension tasks sentiment analysis, paraphrase detection,
entailment recognition, summarization, discourse analysis,
machine translation, grounded language learning and image
retrieval

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

Slide adapted from Manning-Socher

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

 From Words to Phrases

• How can we know when larger units of a sentence are
similar in meaning?
• The snowboarders is leaping over a mogul.
• A person on a snowboard jumps into the air.

• People interpret the meaning of larger text units -
entities, descriptive terms, facts, arguments, stories -
by semantic composition of smaller elements.

 ”A small crowd quietly enters the historical church”.

 From Words to Phrases: 4 models

• Bag of words: Ignores word order, simple averaging of word
vectors in a sub-phrase. Can’t capture differences in meaning as a
result of differences in word order, e.g., "cats climb trees" and
"trees climb cats" will have the same representation.

• Sequence (recurrent) models, e.g., LSTMs: The hidden vector of
the last word is the representation of the phrase.

• Tree-structured (recursive) models: compose each phrase from its
constituent sub-phrases, according to a given syntactic structure
over the sentence

• Convolutional neural networks

Q: Does semantic understanding improve with grammatical
 understanding so that recursive models are justified?

 From Words to Phrases: 4 models

• Bag of words: Ignores word order, simple averaging of word
vectors in a sub-phrase. Can’t capture differences in meaning as a
result of differences in word order, e.g., "cats climb trees" and
"trees climb cats" will have the same representation.

• Sequence models, e.g., LSTMs: The hidden vector of the last word
is the representation of the phrase.

• Tree-structured (recursive) models: compose each phrase from its
constituent sub-phrases, according to a given syntactic structure
over the sentence

• Convolutional neural networks

Q: Does semantic understanding improve with grammatical
 understanding so that recursive models are justified?

Recursive Neural Networks

Given a tree and vectors for the leaves, compute bottom-up
vectors for the intermediate nodes, all the way to the root, via
compositional function g.

How	should	we	map	phrases	into	a	vector	space?	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

2.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

Use	principle	of	composi%onality	
The	meaning	(vector)	of	a	sentence	
is		determined	by		
(1) the	meanings	of	its	words	and	
(2) the	rules	that	combine	them.	

Models	in	this	sec%on	
can	jointly	learn	parse	
trees	and	composi%onal	
vector	representa%ons	

x2	

x1				0								1						2							3						4						5						6						7							8						9					10	

5	

4	

3	

2	

1	

		the	country	of	my	birth	

		the	place	where	I	was	born	

Monday	

Tuesday	

France	
Germany	

12	

 How should we map phrases into a vector space?

Jointly learn parse trees and
compositional vector

representations

Parsing with compositional vector
grammars, Socher et al.

Slide adapted from Manning-Socher

Cons9tuency	Sentence	Parsing:	What	we	want	

9	
1	

5	
3	

8	
5	

9	
1	

4	
3	

NP	
NP	

PP	

S	

7	
1	

VP	

	The																cat														sat														on														the															mat.	13	

 Constituency Sentence Parsing

Slide adapted from Manning-Socher

Learn	Structure	and	Representa9on	

NP	
NP	

PP	

S	

VP	

5	
2	 3	

3	

8	
3	

5	
4	

7	
3	

	The															cat														sat															on														the															mat.	

9	
1	

5	
3	

8	
5	

9	
1	

4	
3	

7	
1	

14					

 Learn Structure and Representation
these are the intermediate

concepts between words and
full sentence

Recursive	vs.	recurrent	neural	networks	

3/2/17	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

2.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

4.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

2.5	
3.8	

 Recursive vs. Recurrent Neural Networks
Q: what is the difference in the

intermediate concepts they
build?

Slide adapted from Manning-Socher

Recursive	vs.	recurrent	neural	networks	

3/2/17	Richard	Socher	

•  Recursive	neural	nets	
require	a	parser	to	get	
tree	structure	

•  Recurrent	neural	nets	
cannot	capture	phrases	
without	prefix	context	
and	ohen	capture	too	much	
of	last	words	in	final	vector	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

2.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

		the											country							of											my									birth	

0.4	
0.3	

2.3	
3.6	

4	
4.5	

7	
7	

2.1	
3.3	

4.5	
3.8	

5.5	
6.1	

1	
3.5	

1	
5	

2.5	
3.8	

 Recursive vs. Recurrent Neural Networks

Recursive neural nets require a
parser to get tree structure.

Recurrent neural nets cannot capture
phrases without prefix context and often
capture too much of last words in final
vector. However, they do not need a parser,
and they are much preferred in current
literature at least.

2.	Recursive	Neural	Networks	for	Structure	Predic9on	

on											the													mat.	

9	
1	

4	
3	

3	
3	

8	
3	

8	
5	

3	
3	

Neural
Network

8	
3	

1.3	

Inputs:	two	candidate	children’s	representa%ons	
Outputs:	
1.  The	seman%c	representa%on	if	the	two	nodes	are	merged.	
2.  Score	of	how	plausible	the	new	node	would	be.	

8	
5	

20	

 Recursive Neural Networks for Structure Prediction

• Inputs: Two candidate children's representations
• Outputs:

1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.

Slide adapted from Manning-Socher

Recursive	Neural	Network	Defini9on	

score		=		UTp	
	
	

p		=		tanh(W							+	b),	
	
	
	

Same	W	parameters	at	all	nodes		
of	the	tree	

8	
5	

3	
3	

Neural
Network

8	
3	

1.3	score		=	 =	parent	

c1						c2	

	c1	
	c2	

21	

 Recursive Neural Network (Version 1)

parent p

Slide adapted from Manning-Socher

Parsing	a	sentence	

9	
1	

5	
3	

5	
2	

Neural
Network

	1.1	
2	
1	

Neural
Network

	0.1	
2	
0	

Neural
Network

	0.4	
1	
0	

Neural
Network

	2.3	
3	
3	

5	
3	

8	
5	

9	
1	

4	
3	

7	
1	

23	

	The																cat													sat															on														the																mat.	

 Parsing a Sentence
Bottom-up beam search

Slide adapted from Manning-Socher

Parsing	a	sentence	

5	
2	

Neural
Network

	1.1	
2	
1	

Neural
Network

	0.1	
2	
0	

3	
3	

Neural
Network

	3.6	
8	
3	

9	
1	

5	
3	
5	
3	

8	
5	

9	
1	

4	
3	

7	
1	

24	

	The																cat													sat															on														the																mat.	

 Parsing a Sentence
Bottom-up beam search

Slide adapted from Manning-Socher

Parsing	a	sentence	

5	
2	

Neural
Network

	1.1	
2	
1	

Neural
Network

	0.1	
2	
0	

3	
3	

Neural
Network

	3.6	
8	
3	

9	
1	

5	
3	
5	
3	

8	
5	

9	
1	

4	
3	

7	
1	

24	

	The																cat													sat															on														the																mat.	

Parsing	a	sentence	

5	
2	

3	
3	

8	
3	

5	
4	

7	
3	

9	
1	

5	
3	
5	
3	

8	
5	

9	
1	

4	
3	

7	
1	

25	
	The																cat													sat															on														the																mat.	

 Parsing a Sentence
Bottom-up beam search

Slide adapted from Manning-Socher

Max-Margin	Framework	-	Details	

•  The	score	of	a	tree	is	computed	by		
the	sum	of	the	parsing	decision	
scores	at	each	node:		

•  x	is	sentence;	y	is	parse	tree	

8	
5	

3	
3	

RNN

8	
3	1.3	

26	

 Cost function

• The score of a tree is computed
by the sum of the parsing
decision scores at each node:

• x is sentence; y is parse tree

Max-Margin	Framework	-	Details	

•  The	score	of	a	tree	is	computed	by		
the	sum	of	the	parsing	decision	
scores	at	each	node:		

•  x	is	sentence;	y	is	parse	tree	

8	
5	

3	
3	

RNN

8	
3	1.3	

26	

Max-Margin	Framework	-	Details	

•  Similar	to	max-margin	parsing	(Taskar	et	al.	2004),	a	supervised	
max-margin	objec%ve	

	

	
	
•  The	loss																penalizes	all	incorrect	decisions	

•  Structure	search	for	A(x)	was	greedy	(join	best	nodes	each	%me)	
•  Instead:	Beam	search	with	chart	

27	

 Max-Margin Framework - Details

• Max-margin objective:

• The loss Δ(y, yi) penalized all incorrect decisions

 Cost function

parse trees resulting from beam search

 Backpropagation Through Structure

• We update parameters, and sample new trees for every example
periodically.0

• In practice, first we compute the top best trees from a PCFG
(probabilistic context free grammar), and then we use those trees to
learn the parameters of the recursive net, using backdrop through
structure (similar to backdrop through time).

• This means the trees for each example are not updated during
parameter learning

• It is like a cascade

Discussion:	Simple	RNN	
•  Decent	results	with	single	matrix	TreeRNN	

•  Single	weight	matrix	TreeRNN	could	capture	some	
phenomena	but	not	adequate	for	more	complex,	
higher	order	composi%on	and	parsing	long	sentences	

•  There	is	no	real	interac%on	between	the	input	words	

•  The	composi%on	func%on	is	the	same		
for	all	syntac%c	categories,	punctua%on,	etc.	 W

c1 c2

p
Wscore s

 RecursiveNN Version 1: Discussion

Single weight matrix RecursiveNN could capture some
phenomena, but not adequate for more complex, higher order
composition and parsing long sentences.

• There is no real interaction between the input words.

• The composition function is the same for all syntactic categories,
punctuation, etc.

Slide adapted from Manning-Socher

Version	2:	Syntac9cally-Un9ed	RNN	

•  A	symbolic	Context-Free	Grammar	(CFG)	backbone	is	
adequate	for	basic	syntac%c	structure	

•  We	use	the	discrete	syntac%c	categories	of	the	
children	to	choose	the	composi%on	matrix	

•  A	TreeRNN	can	do	be^er	with	different	composi%on	
matrix	for	different	syntac%c	environments	

•  The	result	gives	us	a	be^er	seman%cs	

 Version 2: Syntactically-Untied RNN

• We use the discrete syntactic categories of the children to
choose the composition matrix.

• A TreeRNN can do better with different composition matrix for
different syntactic environments.

• This gives better results

A,B,C are part of speech tags

Slide adapted from Manning-Socher

Version 2: Syntactically-Untied RNN

• Problem: Speed. Every candidate score in beam search
needs a matrix-vector product.

• Solution: Compute score only for a subset of trees coming
from a simpler, faster model (PCFG)

• Prunes very unlikely candidates for speed

• Provides coarse syntactic categories of the children for
each beam candidate.

• Compositional Vector Grammar = PCFG + TreeRNN

Slide adapted from Manning-Socher

Details:	Composi9onal	Vector	Grammar	

•  Scores	at	each	node	computed	by	combina%on	of	
PCFG	and	SU-RNN:	

•  Interpreta%on:	Factoring	discrete	and	con%nuous	
parsing	in	one	model:	

•  Socher	et	al.	(2013)	

 Version 2: Syntactically-Untied RNN

• Scores at each note computed by combination of PCFG
and SU-RNN:

• Interpretation: Factoring discrete and continuous parsing in
one model:

Details:	Composi9onal	Vector	Grammar	

•  Scores	at	each	node	computed	by	combina%on	of	
PCFG	and	SU-RNN:	

•  Interpreta%on:	Factoring	discrete	and	con%nuous	
parsing	in	one	model:	

•  Socher	et	al.	(2013)	

Slide adapted from Manning-Socher

Experiments	
•  Standard	WSJ	split,	labeled	F1	
•  Based	on	simple	PCFG	with	fewer	states	
•  Fast	pruning	of	search	space,	few	matrix-vector	products	
•  3.8%	higher	F1,	20%	faster	than	Stanford	factored	parser	

Parser	 Test,	All	Sentences	

Stanford	PCFG,	(Klein	and	Manning,	2003a)	 85.5	

Stanford	Factored	(Klein	and	Manning,	2003b)	 86.6	

Factored	PCFGs	(Hall	and	Klein,	2012)	 89.4	

Collins	(Collins,	1997)	 87.7	

SSN	(Henderson,	2004)	 89.4	

Berkeley	Parser	(Petrov	and	Klein,	2007)	 90.1	

CVG	(RNN)	(Socher	et	al.,	ACL	2013)	 85.0	

CVG	(SU-RNN)	(Socher	et	al.,	ACL	2013)	 90.4	

Charniak	-	Self	Trained	(McClosky	et	al.	2006)	 91.0	

Charniak	-	Self	Trained-ReRanked	(McClosky	et	al.	2006)	 92.1	

 Experiments
• Standard WSJ split, labeled F1
• Based on simple PCFG with fewer states
• Fast pruning of search space, few matrix-vector products
• 3.8% higher F1, 20% faster than Stanford factored parser

SU-RNN	/	CVG	[Socher,	Bauer,	Manning,	Ng	2013]	

Learns	soh	no%on	of	head	words	
Ini%aliza%on:		

NP-CC	

NP-PP	 PP-NP	

PRP$-NP	

 SU-RNN/CVG

• Learns soft notion of head words

• Initialization:

SU-RNN	/	CVG	[Socher,	Bauer,	Manning,	Ng	2013]	

Learns	soh	no%on	of	head	words	
Ini%aliza%on:		

NP-CC	

NP-PP	 PP-NP	

PRP$-NP	

Part of speech tags: https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

CC: coordinating conjunction, e.g., ``and” PRP$: possessive pronoun, e.g.,``my”, ``his”

Learning relative weighting is the best you can do with such linear interactions, W1c1+W2c2

https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

SU-RNN	/	CVG	[Socher,	Bauer,	Manning,	Ng	2013]	

ADJP-NP	

ADVP-ADJP	

JJ-NP	

DT-NP	

 SU-RNN/CVG

Part of speech tags: https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

https://www.winwaed.com/blog/2011/11/08/part-of-speech-tags/

 Phrase similarity in Resulting Vector Representation

• All the figures are adjusted for seasonal variations
• All the numbers are adjusted for seasonal fluctuations
• All the figures are adjusted to remove usual seasonal patterns

• Knight-Ridder wouldn't comment on the offer
• Harsco declined to say what country placed the order
• Coastal wouldn't disclose the terms

• Sales grew almost 7% to $UNK m. from $UNK m.
• Sales rose more than 7% to $94.9 m. from $88.3 m.
• Sales surged 40% to UNK b. yen from UNK b.

Slide adapted from Manning-Socher

 SU-RNN Analysis

• Can transfer semantic information from single related example

• Train sentences:

• He eats spaghetti with a fork.

• She eats spaghetti with pork.

• Test sentences:

• He eats spaghetti with a spoon.

• He eats spaghetti with meat.

SU-RNN	Analysis	 SU-RNN Analysis

Slide adapted from Manning-Socher

Labeling	in	Recursive	Neural	Networks	

Neural
Network

8	
3	

• We	can	use	each	node’s	
representa%on	as	features	for	a	
soJmax	classifier:	

•  Training	similar	to	model	in	part	1	with	
standard	cross-entropy	error	+	scores	

Softmax
Layer

NP	

64	

 Labeling

• We can use each node's
representation as features for
a softmax classifier:

• Training similar to model in part
1 with standard cross-entropy
error + scores of composition

Labeling	in	Recursive	Neural	Networks	

Neural
Network

8	
3	

• We	can	use	each	node’s	
representa%on	as	features	for	a	
soJmax	classifier:	

•  Training	similar	to	model	in	part	1	with	
standard	cross-entropy	error	+	scores	

Softmax
Layer

NP	

64	
Slide adapted from Manning-Socher

Version	3:	
Composi9onality	Through	Recursive	Matrix-Vector	Spaces	

One	way	to	make	the	composi%on	func%on	more	powerful	was	by	
untying	the	weights	W	
	
But	what	if	words	act	mostly	as	an	operator,	e.g.	“very”	in	

	 	 	 	very	good	
	
Proposal:	A	new	composi%on	func%on	

p		=		tanh(W							+	b)	
	

	c1	
	c2	

Before:	

Version 3: Recursive Matrix-Vector Spaces

• We just saw one way to make the composition function more
powerful was by untying the weights W.

• But what if words act mostly as an operator, e.g. "very" in
very good, thus i do not want to take a weighted sum of the
word vectors, i instead want to amplify ``good” ’s vector.

Version	3:	Matrix-vector	RNNs	
[Socher,	Huval,	Bhat,	Manning,	&	Ng,	2012]	

														p	 															

 Version 3: Matrix-Vector RNNs

Slide adapted from Manning-Socher

Composi9onality	Through	Recursive	Matrix-Vector	
Recursive	Neural	Networks	

p		=		tanh(W							+	b)	
	

	c1	
	c2	 p		=		tanh(W												+	b)	

	

C2c1	
C1c2	

67	

Each word is represented by both a matrix and a vector
 Matrix-Vector RNNs

Matrix-vector	RNNs	
[Socher,	Huval,	Bhat,	Manning,	&	Ng,	2012]	

							p	=	 															

															

	A													B	

=P

 Matrix-Vector RNNs

Predic9ng	Sen9ment	Distribu9ons	
Good	example	for	non-linearity	in	language	

69	

 Predicting Sentiment Distributions

Good example for non-linearity in language

Slide adapted from Manning-Socher

Classifica9on	of	Seman9c	Rela9onships	

Classifier	 Features	 F1	
SVM	 POS,	stemming,	syntac%c	pa^erns	 60.1	
MaxEnt	 POS,	WordNet,	morphological	features,	noun	

compound	system,	thesauri,	Google	n-grams	
77.6	

SVM	 POS,	WordNet,	prefixes,	morphological	
features,	dependency	parse	features,	Levin	
classes,	PropBank,	FrameNet,	NomLex-Plus,	
Google	n-grams,	paraphrases,	TextRunner	

82.2	

RNN		 –	 74.8	
MV-RNN	 –	 79.1	
MV-RNN	 POS,	WordNet,	NER	 82.4	

 Classification of Semantic Relationships

 Problems with MV-RNNs
• Parameters of the model grow quadratically with the size of the vocabulary

(due to matrices)
• Can we find a more economical way to have multiplicative interactions in

recursive networks?
• Recursive tensor networks

Compositional Function

• standard linear function + non-linearity, captures additive
interactions:

• matrix/vector compositions (Socher 2011): represent each word
and phrase by both a vector and a matrix. The number of
parameters grows with vocabulary.

• Recursive neural tensor networks. Parameters are both the word
vectors as well as then composition tensor V, shared across all
node compositions. Q: what is the dimensionality of V ?

Slide adapted from Manning-Socher

Version 4: Recursive Neural Tensor Networks

Slide adapted from Manning-Socher

Training

• We train the parameters of the model so that we minimize
classification error at the root node of a sentence (e.g.,
sentiment prediction, does this sentence feel positive or
negative?) or, at many intermediate nodes if such
annotations are available:

Evaluation

Plus + and minus - indicate sentiment prediction in the
different places of the sentence

Evaluation

• Using a dataset with fine grain sentiment labels for all
(intermediate) phrases

Evaluation

• Correctly capturing compositionality of meaning is
important for sentiment analysis due to negations that
reverse the sentiment, e.g., "I didn’t like a single minute of
this film", "the movie was not terrible" etc.

Let’s go back to vanilla trees and use LSTMs instead of
RNNs

creates intermediate vectors for prefixes

creates intermediate vectors for sub-
phrases that are grammatically correct

 RNNS VS LSTMS

 LSTMS vs Tree-LSTMS

We use a different forget gate for every child

What if we use LSTM updates not in a chain but on trees produced by SoA
dependency or constituency parsers?

Does children order matter?

child-sum tree LSTMS N-ary tree LSTMS

• We use Child-sum tree-LSTMs for dependency trees
• We use N-ary (in particular binary) tree LSTMs on constituency trees

Experiments

• Fine-grain and coarse grain sentiment classification
• Semantic relatedness of sentences

Experiments

• Fine-grain and coarse grain sentiment classification
• Semantic relatedness of sentences

Experiments

• Fine-grain and coarse grain sentiment classification
• Semantic relatedness of sentences

From	RNNs	to	CNNs	

• Recurrent	neural	nets	cannot	capture	phrases	without	prefix	
context

• Often	capture	too	much	of	last	words	in	final	vector

• Softmax is	often	only	at	the	last	step

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

4.5
3.8

5.5
6.1

1
3.5

1
5

2.5
3.8

 From RNNs to CNNs

• Recurrent neural nets cannot capture phrases without
prefix context.

• Often capture too much of last words in final vector.

• Softmax is often only at the last step.

 From RNNs to CNNs
• RNN: Get compositional vectors from grammatical phrases

only

• CNN: Compute vectors for every possible phrase

• Example: "the country of my birth" computes vectors for:

• the country, country of, of my, my birth, the country of,
country of my, of my birth, the country of my, country of
my birth

• Regardless of whether each is grammatical - many don't
make sense

• Don't need parser

• But maybe not very linguistically or cognitively plausible

Rela9onship	between	RNNs	and	CNNs	

•  	 	 	CNN 	 	 	 									RNN	

3/2/17	Richard	Socher	

 Relationship between CNN and RNN

Slide adapted from Manning-Socher

Rela9onship	between	RNNs	and	CNNs	

•  	 	 	CNN 	 	 	 									RNN	

					people							there										speak						slowly															people							there										speak						slowly		

3/2/17	Richard	Socher	

representation for EVERY bigram, trigram etc.

 Relationship between CNN and RNN

Slide adapted from Manning-Socher

 From RNNs to CNNs

• Main CNN idea: What if we compute vectors for every
possible phrase?

• Example: "the country of my birth" computes vectors for:

• the country, country of, of my, my birth, the country of,
country of my, of my birth, the country of my, country of
my birth

• Regardless of whether each is grammatical - not very
linguistically or cognitively plausible

What	is	convolution	anyway?

• 1d	discrete	convolution	generally:

• Convolution	is	great	to	extract	features	from	images

• 2d	example	à
• Yellow	and	red	numbers

show	filter	weights
• Green	shows	input

Stanford	UFLDL	wiki

Convolution

• 1D discrete convolution generally:

• Convolution is great to
extract features from
images

• 2D example:
• Yellow and red numbers

show filter weights
• Green shows input

What	is	convolution	anyway?

• 1d	discrete	convolution	generally:

• Convolution	is	great	to	extract	features	from	images

• 2d	example	à
• Yellow	and	red	numbers

show	filter	weights
• Green	shows	input

Stanford	UFLDL	wiki

Slide adapted from Manning-Socher

Single	Layer	CNN

• A	simple	variant	using	one	convolutional	layer	and	pooling	
• Based	on	Collobertand	Weston	(2011)	and	Kim	(2014)	

“Convolutional	Neural	Networks	for	Sentence	Classification”

• Word	vectors:	

• Sentence: (vectors	concatenated)

• Concatenation	of	words	in	range:	

• Convolutional	filter:	 (goes	over	window	of	h	words)

• Could	be	2	(as	before)	higher,	e.g.	3:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1.1

 Single Layer CNN

• A simple variant using one convolutional layer and pooling.

• Word vectors:

• Sentence:

• Convolutional filter:

• Could be 2 (as before) higher, e.g. 3:

Single	Layer	CNN

• A	simple	variant	using	one	convolutional	layer	and	pooling	
• Based	on	Collobertand	Weston	(2011)	and	Kim	(2014)	

“Convolutional	Neural	Networks	for	Sentence	Classification”

• Word	vectors:	

• Sentence: (vectors	concatenated)

• Concatenation	of	words	in	range:	

• Convolutional	filter:	 (goes	over	window	of	h	words)

• Could	be	2	(as	before)	higher,	e.g.	3:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1.1

Single	Layer	CNN

• A	simple	variant	using	one	convolutional	layer	and	pooling	
• Based	on	Collobertand	Weston	(2011)	and	Kim	(2014)	

“Convolutional	Neural	Networks	for	Sentence	Classification”

• Word	vectors:	

• Sentence: (vectors	concatenated)

• Concatenation	of	words	in	range:	

• Convolutional	filter:	 (goes	over	window	of	h	words)

• Could	be	2	(as	before)	higher,	e.g.	3:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1.1

Single	Layer	CNN

• A	simple	variant	using	one	convolutional	layer	and	pooling	
• Based	on	Collobertand	Weston	(2011)	and	Kim	(2014)	

“Convolutional	Neural	Networks	for	Sentence	Classification”

• Word	vectors:	

• Sentence: (vectors	concatenated)

• Concatenation	of	words	in	range:	

• Convolutional	filter:	 (goes	over	window	of	h	words)

• Could	be	2	(as	before)	higher,	e.g.	3:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1.1

Slide adapted from Manning-Socher

Single	layer	CNN

• Convolutional	filter:	 (goes	over	window	of	h	words)
• Note,	filter	is	vector!
• Window	size	h	could	be	2	(as	before)	or	higher,	e.g.	3:
• To	compute	feature	for	CNN	layer:

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1

 Single Layer CNN

• Convolutional filter:

• Window size h could be 2 (as before) or higher, e.g. 3

• To compute feature for CNN layer:

Single	Layer	CNN

• A	simple	variant	using	one	convolutional	layer	and	pooling	
• Based	on	Collobertand	Weston	(2011)	and	Kim	(2014)	

“Convolutional	Neural	Networks	for	Sentence	Classification”

• Word	vectors:	

• Sentence: (vectors	concatenated)

• Concatenation	of	words	in	range:	

• Convolutional	filter:	 (goes	over	window	of	h	words)

• Could	be	2	(as	before)	higher,	e.g.	3:

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751,
October 25-29, 2014, Doha, Qatar. c�2014 Association for Computational Linguistics

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

Abstract
We report on a series of experiments with
convolutional neural networks (CNN)
trained on top of pre-trained word vec-
tors for sentence-level classification tasks.
We show that a simple CNN with lit-
tle hyperparameter tuning and static vec-
tors achieves excellent results on multi-
ple benchmarks. Learning task-specific
vectors through fine-tuning offers further
gains in performance. We additionally
propose a simple modification to the ar-
chitecture to allow for the use of both
task-specific and static vectors. The CNN
models discussed herein improve upon the
state of the art on 4 out of 7 tasks, which
include sentiment analysis and question
classification.

1 Introduction
Deep learning models have achieved remarkable
results in computer vision (Krizhevsky et al.,
2012) and speech recognition (Graves et al., 2013)
in recent years. Within natural language process-
ing, much of the work with deep learning meth-
ods has involved learning word vector representa-
tions through neural language models (Bengio et
al., 2003; Yih et al., 2011; Mikolov et al., 2013)
and performing composition over the learned word
vectors for classification (Collobert et al., 2011).
Word vectors, wherein words are projected from a
sparse, 1-of-V encoding (here V is the vocabulary
size) onto a lower dimensional vector space via a
hidden layer, are essentially feature extractors that
encode semantic features of words in their dimen-
sions. In such dense representations, semantically
close words are likewise close—in euclidean or
cosine distance—in the lower dimensional vector
space.

Convolutional neural networks (CNN) utilize
layers with convolving filters that are applied to

local features (LeCun et al., 1998). Originally
invented for computer vision, CNN models have
subsequently been shown to be effective for NLP
and have achieved excellent results in semantic
parsing (Yih et al., 2014), search query retrieval
(Shen et al., 2014), sentence modeling (Kalch-
brenner et al., 2014), and other traditional NLP
tasks (Collobert et al., 2011).

In the present work, we train a simple CNN with
one layer of convolution on top of word vectors
obtained from an unsupervised neural language
model. These vectors were trained by Mikolov et
al. (2013) on 100 billion words of Google News,
and are publicly available.1 We initially keep the
word vectors static and learn only the other param-
eters of the model. Despite little tuning of hyper-
parameters, this simple model achieves excellent
results on multiple benchmarks, suggesting that
the pre-trained vectors are ‘universal’ feature ex-
tractors that can be utilized for various classifica-
tion tasks. Learning task-specific vectors through
fine-tuning results in further improvements. We
finally describe a simple modification to the archi-
tecture to allow for the use of both pre-trained and
task-specific vectors by having multiple channels.

Our work is philosophically similar to Razavian
et al. (2014) which showed that for image clas-
sification, feature extractors obtained from a pre-
trained deep learning model perform well on a va-
riety of tasks—including tasks that are very dif-
ferent from the original task for which the feature
extractors were trained.

2 Model

The model architecture, shown in figure 1, is a
slight variant of the CNN architecture of Collobert
et al. (2011). Let xi 2 Rk be the k-dimensional
word vector corresponding to the i-th word in the
sentence. A sentence of length n (padded where

1https://code.google.com/p/word2vec/

1746

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

1.1

Slide adapted from Manning-Socher

Single	layer	CNN

• Filter	w	is	applied	to	all	possible	windows	(concatenated	vectors)

• Sentence:

• All	possible	windows	of	length	h:

• Result	is	a	feature	map:	

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 … 2.4

??????????

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

 Single Layer CNN

• Filter w is applied to all possible windows (concatenated vectors)

• Sentence:

• All possible windows of length h:

• Result is a feature map:

Slide adapted from Manning-Socher

Single	layer	CNN

• Filter	w	is	applied	to	all	possible	windows	(concatenated	vectors)

• Sentence:

• All	possible	windows	of	length	h:

• Result	is	a	feature	map:	

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

the		 country							of							 my		 birth

0.4
0.3

2.3
3.6

4
4.5

7
7

2.1
3.3

1.1 3.5 … 2.4

0
0

0
0

 Single Layer CNN

• Filter w is applied to all possible windows (concatenated vectors)

• Sentence:

• All possible windows of length h:

• Result is a feature map:

Slide adapted from Manning-Socher

Single	layer	CNN:	Pooling	layer

• New	building	block:	Pooling
• In	particular:	max-over-time	pooling	layer
• Idea:	capture	most	important	activation	(maximum	over	time)

• From	feature	map

• Pooled	single	number:

• But	we	want	more	features!

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

 Single Layer CNN: Pooling

• New building block: Pooling

• In particular: max-over-time pooling layer

• Idea: Capture most important activation (maximum over time)

• Pooled single number:

• From feature map

• But we want more features!

 Solution: Multiple Filters

• Use multiple filter weights w

• Useful to have different window sizes h

• Because of max pooling, length of c is irrelevant

• So we can have some filters that look at unigrams, bigrams, tri-
grams, 4-grams, etc.

Single	layer	CNN:	Pooling	layer

• New	building	block:	Pooling
• In	particular:	max-over-time	pooling	layer
• Idea:	capture	most	important	activation	(maximum	over	time)

• From	feature	map

• Pooled	single	number:

• But	we	want	more	features!

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

 Classification after one CNN Layer

• First one convolution, followed by one max-pooling

• To obtain final feature vector:
• Assuming m filters w

• Simple final softmax layer

Classification	after	one	CNN	layer

• First	one	convolution,	followed	by	one	max-pooling

• To	obtain	final	feature	vector:
(assuming	m	filters	w)

• Simple	final	softmax layer	

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Classification	after	one	CNN	layer

• First	one	convolution,	followed	by	one	max-pooling

• To	obtain	final	feature	vector:
(assuming	m	filters	w)

• Simple	final	softmax layer	

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

Figure	from	Kim	(2014)

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one

feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m

filters), instead of using

y = w · z + b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ˆ

w = pw, and
ˆ

w is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s

whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

1747

n	words	(possibly	 zero	padded)	 and	each	word	vector	has	k	dimensions

 Classification after one CNN Layer

Slide adapted from Manning-Socher

Experiments

Model MR SST-1 SST-2 Subj TREC CR MPQA
CNN-rand 76.1 45.0 82.7 89.6 91.2 79.8 83.4

CNN-static 81.0 45.5 86.8 93.0 92.8 84.7 89.6
CNN-non-static 81.5 48.0 87.2 93.4 93.6 84.3 89.5

CNN-multichannel 81.1 47.4 88.1 93.2 92.2 85.0 89.4

RAE (Socher et al., 2011) 77.7 43.2 82.4 � � � 86.4

MV-RNN (Socher et al., 2012) 79.0 44.4 82.9 � � � �
RNTN (Socher et al., 2013) � 45.7 85.4 � � � �
DCNN (Kalchbrenner et al., 2014) � 48.5 86.8 � 93.0 � �
Paragraph-Vec (Le and Mikolov, 2014) � 48.7 87.8 � � � �
CCAE (Hermann and Blunsom, 2013) 77.8 � � � � � 87.2

Sent-Parser (Dong et al., 2014) 79.5 � � � � � 86.3

NBSVM (Wang and Manning, 2012) 79.4 � � 93.2 � 81.8 86.3

MNB (Wang and Manning, 2012) 79.0 � � 93.6 � 80.0 86.3

G-Dropout (Wang and Manning, 2013) 79.0 � � 93.4 � 82.1 86.1

F-Dropout (Wang and Manning, 2013) 79.1 � � 93.6 � 81.9 86.3

Tree-CRF (Nakagawa et al., 2010) 77.3 � � � � 81.4 86.1

CRF-PR (Yang and Cardie, 2014) � � � � � 82.7 �
SVMS (Silva et al., 2011) � � � � 95.0 � �

Table 2: Results of our CNN models against other methods. RAE: Recursive Autoencoders with pre-trained word vectors from
Wikipedia (Socher et al., 2011). MV-RNN: Matrix-Vector Recursive Neural Network with parse trees (Socher et al., 2012).
RNTN: Recursive Neural Tensor Network with tensor-based feature function and parse trees (Socher et al., 2013). DCNN:
Dynamic Convolutional Neural Network with k-max pooling (Kalchbrenner et al., 2014). Paragraph-Vec: Logistic regres-
sion on top of paragraph vectors (Le and Mikolov, 2014). CCAE: Combinatorial Category Autoencoders with combinatorial
category grammar operators (Hermann and Blunsom, 2013). Sent-Parser: Sentiment analysis-specific parser (Dong et al.,
2014). NBSVM, MNB: Naive Bayes SVM and Multinomial Naive Bayes with uni-bigrams from Wang and Manning (2012).
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout from Wang and Manning (2013). Tree-CRF: Dependency tree
with Conditional Random Fields (Nakagawa et al., 2010). CRF-PR: Conditional Random Fields with Posterior Regularization
(Yang and Cardie, 2014). SVMS : SVM with uni-bi-trigrams, wh word, head word, POS, parser, hypernyms, and 60 hand-coded
rules as features from Silva et al. (2011).

to both channels, but gradients are back-
propagated only through one of the chan-
nels. Hence the model is able to fine-tune
one set of vectors while keeping the other
static. Both channels are initialized with
word2vec.

In order to disentangle the effect of the above
variations versus other random factors, we elim-
inate other sources of randomness—CV-fold as-
signment, initialization of unknown word vec-
tors, initialization of CNN parameters—by keep-
ing them uniform within each dataset.

4 Results and Discussion

Results of our models against other methods are
listed in table 2. Our baseline model with all ran-
domly initialized words (CNN-rand) does not per-
form well on its own. While we had expected per-
formance gains through the use of pre-trained vec-
tors, we were surprised at the magnitude of the
gains. Even a simple model with static vectors
(CNN-static) performs remarkably well, giving

competitive results against the more sophisticated
deep learning models that utilize complex pool-
ing schemes (Kalchbrenner et al., 2014) or require
parse trees to be computed beforehand (Socher
et al., 2013). These results suggest that the pre-
trained vectors are good, ‘universal’ feature ex-
tractors and can be utilized across datasets. Fine-
tuning the pre-trained vectors for each task gives
still further improvements (CNN-non-static).

4.1 Multichannel vs. Single Channel Models
We had initially hoped that the multichannel ar-
chitecture would prevent overfitting (by ensuring
that the learned vectors do not deviate too far
from the original values) and thus work better than
the single channel model, especially on smaller
datasets. The results, however, are mixed, and fur-
ther work on regularizing the fine-tuning process
is warranted. For instance, instead of using an
additional channel for the non-static portion, one
could maintain a single channel but employ extra
dimensions that are allowed to be modified during
training.

1749

 Experiments

CNN	alternatives

• Narrow	vs wide	convolution

• Complex	pooling	schemes
(over	sequences)
and	deeper	convolutional	layers

• Kalchbrenner et	al.	(2014)

layer to the network, the TDNN can be adopted as
a sentence model (Collobert and Weston, 2008).

2.1 Related Neural Sentence Models
Various neural sentence models have been de-
scribed. A general class of basic sentence models
is that of Neural Bag-of-Words (NBoW) models.
These generally consist of a projection layer that
maps words, sub-word units or n-grams to high
dimensional embeddings; the latter are then com-
bined component-wise with an operation such as
summation. The resulting combined vector is clas-
sified through one or more fully connected layers.

A model that adopts a more general structure
provided by an external parse tree is the Recursive
Neural Network (RecNN) (Pollack, 1990; Küchler
and Goller, 1996; Socher et al., 2011; Hermann
and Blunsom, 2013). At every node in the tree the
contexts at the left and right children of the node
are combined by a classical layer. The weights of
the layer are shared across all nodes in the tree.
The layer computed at the top node gives a repre-
sentation for the sentence. The Recurrent Neural
Network (RNN) is a special case of the recursive
network where the structure that is followed is a
simple linear chain (Gers and Schmidhuber, 2001;
Mikolov et al., 2011). The RNN is primarily used
as a language model, but may also be viewed as a
sentence model with a linear structure. The layer
computed at the last word represents the sentence.

Finally, a further class of neural sentence mod-
els is based on the convolution operation and the
TDNN architecture (Collobert and Weston, 2008;
Kalchbrenner and Blunsom, 2013b). Certain con-
cepts used in these models are central to the
DCNN and we describe them next.

2.2 Convolution
The one-dimensional convolution is an operation
between a vector of weights m 2 Rm and a vector
of inputs viewed as a sequence s 2 Rs. The vector
m is the filter of the convolution. Concretely, we
think of s as the input sentence and s

i

2 R is a sin-
gle feature value associated with the i-th word in
the sentence. The idea behind the one-dimensional
convolution is to take the dot product of the vector
m with each m-gram in the sentence s to obtain
another sequence c:

c
j

= m|s
j�m+1:j (1)

Equation 1 gives rise to two types of convolution
depending on the range of the index j. The narrow
type of convolution requires that s � m and yields

s1 s1ss ss

c1 c5c5

Figure 2: Narrow and wide types of convolution.
The filter m has size m = 5.

a sequence c 2 Rs�m+1 with j ranging from m
to s. The wide type of convolution does not have
requirements on s or m and yields a sequence c 2
Rs+m�1 where the index j ranges from 1 to s +
m � 1. Out-of-range input values s

i

where i < 1

or i > s are taken to be zero. The result of the
narrow convolution is a subsequence of the result
of the wide convolution. The two types of one-
dimensional convolution are illustrated in Fig. 2.

The trained weights in the filter m correspond
to a linguistic feature detector that learns to recog-
nise a specific class of n-grams. These n-grams
have size n m, where m is the width of the
filter. Applying the weights m in a wide convo-
lution has some advantages over applying them in
a narrow one. A wide convolution ensures that all
weights in the filter reach the entire sentence, in-
cluding the words at the margins. This is particu-
larly significant when m is set to a relatively large
value such as 8 or 10. In addition, a wide convo-
lution guarantees that the application of the filter
m to the input sentence s always produces a valid
non-empty result c, independently of the width m
and the sentence length s. We next describe the
classical convolutional layer of a TDNN.

2.3 Time-Delay Neural Networks

A TDNN convolves a sequence of inputs s with a
set of weights m. As in the TDNN for phoneme
recognition (Waibel et al., 1990), the sequence s
is viewed as having a time dimension and the con-
volution is applied over the time dimension. Each
s
j

is often not just a single value, but a vector of
d values so that s 2 Rd⇥s. Likewise, m is a ma-
trix of weights of size d⇥m. Each row of m is
convolved with the corresponding row of s and the
convolution is usually of the narrow type. Multi-
ple convolutional layers may be stacked by taking
the resulting sequence c as input to the next layer.

The Max-TDNN sentence model is based on the
architecture of a TDNN (Collobert and Weston,
2008). In the model, a convolutional layer of the
narrow type is applied to the sentence matrix s,
where each column corresponds to the feature vec-

tor w
i

2 Rd of a word in the sentence:

s =

2

4w1 . . . w
s

3

5 (2)

To address the problem of varying sentence
lengths, the Max-TDNN takes the maximum of
each row in the resulting matrix c yielding a vector
of d values:

c
max

=

2

64
max(c1,:)

...
max(c

d,:)

3

75 (3)

The aim is to capture the most relevant feature, i.e.
the one with the highest value, for each of the d
rows of the resulting matrix c. The fixed-sized
vector c

max

is then used as input to a fully con-
nected layer for classification.

The Max-TDNN model has many desirable
properties. It is sensitive to the order of the words
in the sentence and it does not depend on external
language-specific features such as dependency or
constituency parse trees. It also gives largely uni-
form importance to the signal coming from each
of the words in the sentence, with the exception
of words at the margins that are considered fewer
times in the computation of the narrow convolu-
tion. But the model also has some limiting as-
pects. The range of the feature detectors is lim-
ited to the span m of the weights. Increasing m or
stacking multiple convolutional layers of the nar-
row type makes the range of the feature detectors
larger; at the same time it also exacerbates the ne-
glect of the margins of the sentence and increases
the minimum size s of the input sentence required
by the convolution. For this reason higher-order
and long-range feature detectors cannot be easily
incorporated into the model. The max pooling op-
eration has some disadvantages too. It cannot dis-
tinguish whether a relevant feature in one of the
rows occurs just one or multiple times and it for-
gets the order in which the features occur. More
generally, the pooling factor by which the signal
of the matrix is reduced at once corresponds to
s�m+1; even for moderate values of s the pool-
ing factor can be excessive. The aim of the next
section is to address these limitations while pre-
serving the advantages.

3 Convolutional Neural Networks with
Dynamic k-Max Pooling

We model sentences using a convolutional archi-
tecture that alternates wide convolutional layers

K-Max pooling
(k=3)

Fully connected
layer

Folding

Wide
convolution

(m=2)

Dynamic
k-max pooling
 (k= f(s) =5)

 Projected
sentence

matrix
(s=7)

Wide
convolution

(m=3)

 The cat sat on the red mat

Figure 3: A DCNN for the seven word input sen-
tence. Word embeddings have size d = 4. The
network has two convolutional layers with two
feature maps each. The widths of the filters at the
two layers are respectively 3 and 2. The (dynamic)
k-max pooling layers have values k of 5 and 3.

with dynamic pooling layers given by dynamic k-
max pooling. In the network the width of a feature
map at an intermediate layer varies depending on
the length of the input sentence; the resulting ar-
chitecture is the Dynamic Convolutional Neural
Network. Figure 3 represents a DCNN. We pro-
ceed to describe the network in detail.

3.1 Wide Convolution

Given an input sentence, to obtain the first layer of
the DCNN we take the embedding w

i

2 Rd for
each word in the sentence and construct the sen-
tence matrix s 2 Rd⇥s as in Eq. 2. The values
in the embeddings w

i

are parameters that are op-
timised during training. A convolutional layer in
the network is obtained by convolving a matrix of
weights m 2 Rd⇥m with the matrix of activations
at the layer below. For example, the second layer
is obtained by applying a convolution to the sen-
tence matrix s itself. Dimension d and filter width
m are hyper-parameters of the network. We let the
operations be wide one-dimensional convolutions
as described in Sect. 2.2. The resulting matrix c
has dimensions d⇥ (s+m� 1).

Beyond a single layer: adaptive pooling
CNN	alternatives

• Narrow	vs wide	convolution

• Complex	pooling	schemes
(over	sequences)
and	deeper	convolutional	layers

• Kalchbrenner et	al.	(2014)

layer to the network, the TDNN can be adopted as
a sentence model (Collobert and Weston, 2008).

2.1 Related Neural Sentence Models
Various neural sentence models have been de-
scribed. A general class of basic sentence models
is that of Neural Bag-of-Words (NBoW) models.
These generally consist of a projection layer that
maps words, sub-word units or n-grams to high
dimensional embeddings; the latter are then com-
bined component-wise with an operation such as
summation. The resulting combined vector is clas-
sified through one or more fully connected layers.

A model that adopts a more general structure
provided by an external parse tree is the Recursive
Neural Network (RecNN) (Pollack, 1990; Küchler
and Goller, 1996; Socher et al., 2011; Hermann
and Blunsom, 2013). At every node in the tree the
contexts at the left and right children of the node
are combined by a classical layer. The weights of
the layer are shared across all nodes in the tree.
The layer computed at the top node gives a repre-
sentation for the sentence. The Recurrent Neural
Network (RNN) is a special case of the recursive
network where the structure that is followed is a
simple linear chain (Gers and Schmidhuber, 2001;
Mikolov et al., 2011). The RNN is primarily used
as a language model, but may also be viewed as a
sentence model with a linear structure. The layer
computed at the last word represents the sentence.

Finally, a further class of neural sentence mod-
els is based on the convolution operation and the
TDNN architecture (Collobert and Weston, 2008;
Kalchbrenner and Blunsom, 2013b). Certain con-
cepts used in these models are central to the
DCNN and we describe them next.

2.2 Convolution
The one-dimensional convolution is an operation
between a vector of weights m 2 Rm and a vector
of inputs viewed as a sequence s 2 Rs. The vector
m is the filter of the convolution. Concretely, we
think of s as the input sentence and s

i

2 R is a sin-
gle feature value associated with the i-th word in
the sentence. The idea behind the one-dimensional
convolution is to take the dot product of the vector
m with each m-gram in the sentence s to obtain
another sequence c:

c
j

= m|s
j�m+1:j (1)

Equation 1 gives rise to two types of convolution
depending on the range of the index j. The narrow
type of convolution requires that s � m and yields

s1 s1ss ss

c1 c5c5

Figure 2: Narrow and wide types of convolution.
The filter m has size m = 5.

a sequence c 2 Rs�m+1 with j ranging from m
to s. The wide type of convolution does not have
requirements on s or m and yields a sequence c 2
Rs+m�1 where the index j ranges from 1 to s +
m � 1. Out-of-range input values s

i

where i < 1

or i > s are taken to be zero. The result of the
narrow convolution is a subsequence of the result
of the wide convolution. The two types of one-
dimensional convolution are illustrated in Fig. 2.

The trained weights in the filter m correspond
to a linguistic feature detector that learns to recog-
nise a specific class of n-grams. These n-grams
have size n m, where m is the width of the
filter. Applying the weights m in a wide convo-
lution has some advantages over applying them in
a narrow one. A wide convolution ensures that all
weights in the filter reach the entire sentence, in-
cluding the words at the margins. This is particu-
larly significant when m is set to a relatively large
value such as 8 or 10. In addition, a wide convo-
lution guarantees that the application of the filter
m to the input sentence s always produces a valid
non-empty result c, independently of the width m
and the sentence length s. We next describe the
classical convolutional layer of a TDNN.

2.3 Time-Delay Neural Networks

A TDNN convolves a sequence of inputs s with a
set of weights m. As in the TDNN for phoneme
recognition (Waibel et al., 1990), the sequence s
is viewed as having a time dimension and the con-
volution is applied over the time dimension. Each
s
j

is often not just a single value, but a vector of
d values so that s 2 Rd⇥s. Likewise, m is a ma-
trix of weights of size d⇥m. Each row of m is
convolved with the corresponding row of s and the
convolution is usually of the narrow type. Multi-
ple convolutional layers may be stacked by taking
the resulting sequence c as input to the next layer.

The Max-TDNN sentence model is based on the
architecture of a TDNN (Collobert and Weston,
2008). In the model, a convolutional layer of the
narrow type is applied to the sentence matrix s,
where each column corresponds to the feature vec-

tor w
i

2 Rd of a word in the sentence:

s =

2

4w1 . . . w
s

3

5 (2)

To address the problem of varying sentence
lengths, the Max-TDNN takes the maximum of
each row in the resulting matrix c yielding a vector
of d values:

c
max

=

2

64
max(c1,:)

...
max(c

d,:)

3

75 (3)

The aim is to capture the most relevant feature, i.e.
the one with the highest value, for each of the d
rows of the resulting matrix c. The fixed-sized
vector c

max

is then used as input to a fully con-
nected layer for classification.

The Max-TDNN model has many desirable
properties. It is sensitive to the order of the words
in the sentence and it does not depend on external
language-specific features such as dependency or
constituency parse trees. It also gives largely uni-
form importance to the signal coming from each
of the words in the sentence, with the exception
of words at the margins that are considered fewer
times in the computation of the narrow convolu-
tion. But the model also has some limiting as-
pects. The range of the feature detectors is lim-
ited to the span m of the weights. Increasing m or
stacking multiple convolutional layers of the nar-
row type makes the range of the feature detectors
larger; at the same time it also exacerbates the ne-
glect of the margins of the sentence and increases
the minimum size s of the input sentence required
by the convolution. For this reason higher-order
and long-range feature detectors cannot be easily
incorporated into the model. The max pooling op-
eration has some disadvantages too. It cannot dis-
tinguish whether a relevant feature in one of the
rows occurs just one or multiple times and it for-
gets the order in which the features occur. More
generally, the pooling factor by which the signal
of the matrix is reduced at once corresponds to
s�m+1; even for moderate values of s the pool-
ing factor can be excessive. The aim of the next
section is to address these limitations while pre-
serving the advantages.

3 Convolutional Neural Networks with
Dynamic k-Max Pooling

We model sentences using a convolutional archi-
tecture that alternates wide convolutional layers

K-Max pooling
(k=3)

Fully connected
layer

Folding

Wide
convolution

(m=2)

Dynamic
k-max pooling
 (k= f(s) =5)

 Projected
sentence

matrix
(s=7)

Wide
convolution

(m=3)

 The cat sat on the red mat

Figure 3: A DCNN for the seven word input sen-
tence. Word embeddings have size d = 4. The
network has two convolutional layers with two
feature maps each. The widths of the filters at the
two layers are respectively 3 and 2. The (dynamic)
k-max pooling layers have values k of 5 and 3.

with dynamic pooling layers given by dynamic k-
max pooling. In the network the width of a feature
map at an intermediate layer varies depending on
the length of the input sentence; the resulting ar-
chitecture is the Dynamic Convolutional Neural
Network. Figure 3 represents a DCNN. We pro-
ceed to describe the network in detail.

3.1 Wide Convolution

Given an input sentence, to obtain the first layer of
the DCNN we take the embedding w

i

2 Rd for
each word in the sentence and construct the sen-
tence matrix s 2 Rd⇥s as in Eq. 2. The values
in the embeddings w

i

are parameters that are op-
timised during training. A convolutional layer in
the network is obtained by convolving a matrix of
weights m 2 Rd⇥m with the matrix of activations
at the layer below. For example, the second layer
is obtained by applying a convolution to the sen-
tence matrix s itself. Dimension d and filter width
m are hyper-parameters of the network. We let the
operations be wide one-dimensional convolutions
as described in Sect. 2.2. The resulting matrix c
has dimensions d⇥ (s+m� 1).

• Narrow vs. wide convolution

• Complex pooling schemes (over
sequences) and deeper
convolutional layers

