
iLQR

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science



Optimal Control (Open Loop)

s.t. x0 = x̄0

xt+1 = f(xt, ut) t = 0, ..., T � 1

min
x,u

TX

t=0

c

t

(x
t

, u

t

)

• The optimal control problem:



Optimal Control (Open Loop)

• Solution:

• Sequence of controls    and resulting state sequence 

• In general non-convex optimization problem, can be solved with 
sequential convex programming (SCP): https://stanford.edu/class/
ee364b/lectures/seq_slides.pdf

xu

s.t. x0 = x̄0

xt+1 = f(xt, ut) t = 0, ..., T � 1

min
x,u

TX

t=0

c

t

(x
t

, u

t

)

• The optimal control problem:

https://stanford.edu/class/ee364b/lectures/seq_slides.pdf
https://stanford.edu/class/ee364b/lectures/seq_slides.pdf


Optimal Control (Closed Loop a.k.a. MPC)

Given:!!

For!t=0,!1,!2,!…,!T!

!  Solve!

!  Execute!ut 

!  Observe!resul3ng!state,!

Op3mal!Control!(Closed!Loop)!

=!“Model!Predic3ve!Control”!
!
Ini3alize!with!solu3on!from!t!F!1!to!solve!fast!at!3me!t!

min
x,u

TX

k=t

c

k

(x
k

, u

k

)

s.t. x

k+1 = f(x
k

, u

k

), 8k 2 {t, t+ 1, . . . , T � 1}
x

t

= x̄

t

x̄t+1

Given:

For

• Solve

• Execute 

• Observe resulting state,

•   Initialize with solution from         to solve fast at time        

min
x,u

TX

k=t

c

k

(x
k

, u

k

)

x̄0

t = 0, 1, 2, ..., T

s.t. xk+1 = f(xk, uk), 8k 2 {t, t+ 1, ..., T � 1}

ut

x̄t+1

xt = x̄t

t� 1 t



Shooting methods vs collocation methods

Shooting methods vs collocation

collocation method: optimize over actions and states, with constraints

Collocation Method: optimize over actions and state, with constraints

min
u1,...,uT ,x1,...,xT

TX

t=1

c(x
t

, u

t

) s.t x
t

= f(x
t�1, ut�1)

Diagram: Sergey Levine



Shooting methods vs collocation

shooting method: optimize over actions only

Shooting Method: optimize over actions only

min
u1,...,uT

c(x1, u1) + c(f(x1, u1), u2) + · · ·+ c(f(f(...)...), uT )

Diagram: Sergey Levine

Indeed, x are not necessary since every u results (following the dynamics) 
in a state sequence x, for which in turn the cost can be computed
• Not clear how to initialize in a way that nudges towards a goal state

Shooting methods vs collocation methods



Bellman’s Curse of Dimensionality

Bellman’s!Curse!of!Dimensionality!
!  n:dimensional!state!space!

!  Number!of!states!grows!exponenBally!in!n!(for!fixed!number!of!
discreBzaBon!levels!per!coordinate)!

!  In!pracBce!
!  DiscreBzaBon!is!considered!only!computaBonally!feasible!up!to!5!or!6!

dimensional!state!spaces!even!when!using!
!  Variable!resoluBon!discreBzaBon!
!  Highly!opBmized!implementaBons!

• n-dimensional state space

• Number of states grows exponentially in n (for fixed number of 
discretization levels per coordinate)

• In practice

• Discretization is considered only computationally feasible up to 
5 or 6 dimensional state spaces even when using

• Variable resolution discretization

• Highly optimized implementations 



Linear case: LQR

Linear case: LQR

linear quadratic

• Very special case: Optimal Control for Linear Dynamic Systems and Quadratic 
Cost (a.k.a. LQ setting)

• Can solve continuous state-space optimal control problem exactly
• Running time: O(Tn3)



Linear dynamics: Newtonian Dynamics

•  

•  

•  

•  

x

t+1 = x

t

+�tẋ

t

+�t

2
F

x

yt+1 = yt +�tẏt +�t2Fy

ẏt+1 = ẏt +�tFy

ẋ

t+1 = ẋ

t

+�tF

x



What is the state x?

• position and velocities of the robotic joints

• position and velocity of the object being manipulated

In most robotic tasks, state is hand engineered and includes: 

Those are both known: the robot knows its state and we perceive the state 
of the objects in the world. In tasks where we do not even want to bother 
with object state, we just concatenate the robotic state across multiple time 
steps to implicitly infer the interaction (collision with the object)



What is the cost

•  

     is the target state

• In the final time step, you can add a term with higher weight:

 Final cost

• For object manipulation,      includes not only desired pose of the 
end effector but also desired pose of the objects

c(xt, ut)

c(xt, ut) = kxt � x

⇤k+ �kutk

x

⇤

c(xT , uT ) = 2(kxT � x

⇤k+ �kuT k)

x

⇤



Definitions:
              : optimal action value function, optimal cost-to-go at state     as a 
function of       assuming we act optimal past step t
Q(xt, ut) xt

ut   
                 : optimal state value function, optimal cost-to-go from state

V (xt) xt

Linear Quadratic Regulator (LQR)
Linear case: LQR

V (xt) = min
ut

Q(xt, ut)

: the initial state, known and given x0



Principle of Optimality

An optimal policy has the property that whatever the initial 
state and initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting 
from the first decision. (See Bellman, 1957, Chap. III.3.)



Linear Quadratic Regulator (LQR)
Linear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

uT



Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

Cost matrices 
for the last time step:

uT



Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Linear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

Cost matrices 
for the last time step:

uT

Set derivative to zero since we have a quadratic to find 
minimizing u_T:



Linear Quadratic Regulator (LQR)
Linear case: LQRLinear case: LQR

Linear case: LQR

Value iteration: backward propagation!
Start from       and work backwards

Linear case: LQR

Cost matrices 
for the last time step:

uT

Set derivative to zero since we have a quadratic to find 
minimizing u_T:

Linear case: LQRLinear case: LQR
Linear case: LQR



Linear Quadratic Regulator (LQR)
Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )



Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )

Linear case: LQR

Linear case: LQR



Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )

Linear case: LQR

Linear case: LQR

Linear case: LQR



Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )

Linear case: LQR
Linear case: LQR



Linear Quadratic Regulator (LQR)Linear case: LQR

Remember:
Substituting the minimizer       into                  gives us           !

V (xt) = min
ut

Q(xt, ut)

uT Q(xT , uT ) V (xT )

Linear case: LQR
Linear case: LQR

optimal cost-to-go as a function of 
the final state



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

cost at T-1 best cost-to-go



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

best cost-to-go

Linear case: LQR

linear linearquadratic

cost at T-1



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

best cost-to-go

Linear case: LQR

linear linearquadratic

cost at T-1



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic
We can eliminate x_T by writing only in terms of quantities of T-1!



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We can eliminate x_T by writing only in terms of quantities of T-1!



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We can eliminate x_T by writing only in terms of quantities of T-1!



Linear Quadratic Regulator (LQR)
We propagate the optimal value function backwards!!

q⇤(s, a) = r(s, a) + �
X

s02S

T (s0|s, a)v⇤(s0)

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We can eliminate x_T by writing only in terms of quantities of T-1!

We have written            only in terms of                      !V (xT ) xT�1, uT�1



Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go



Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We have written optimal action value function                          only in terms of
                    !

Q(xT�1, uT�1)

xT�1, uT�1

We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go



Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We have written optimal action value function                          only in terms of
                    !

Q(xT�1, uT�1)

xT�1, uT�1

We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Let’s take derivative to find the minimizing u_{T-1}!



Linear Quadratic Regulator (LQR)
Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

Linear case: LQR

linear linearquadratic

We have written optimal action value function                          only in terms of
                    !

Q(xT�1, uT�1)

xT�1, uT�1

We propagate the optimal value function backwards!!

Linear case: LQR

linear linearquadratic

Immediate cost best cost-to-go

Let’s take derivative to find the minimizing u_{T-1}!



Linear case: LQR

Linear case: LQR

Diagram: Sergey Levine

Backward recursion:



Linear case: LQR

Linear case: LQR
Backward recursion:

We know x_0!

Linear case: LQR

Forward recursion:



Non-linear case:Use iterative approximations!

First order Taylor expansion for the dynamics around a trajectory                      :

Nonlinear case: DDP/iterative LQR

x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQR

Second  order Taylor expansion for the cost around a trajectory                     :x̂t, ût, t = 1 · · ·T



Non-linear case:Use iterative approximations!

First order Taylor expansion for the dynamics around a trajectory                      :

Nonlinear case: DDP/iterative LQR

x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQR

Second  order Taylor expansion for the cost around a trajectory                     :x̂t, ût, t = 1 · · ·T



Non-linear case:Use iterative approximations!

Nonlinear case: DDP/iterative LQR

First order Taylor expansion for the dynamics around a trajectory                      :

Nonlinear case: DDP/iterative LQR

x̂t, ût, t = 1 · · ·T

Nonlinear case: DDP/iterative LQR

Second  order Taylor expansion for the cost around a trajectory                     :x̂t, ût, t = 1 · · ·T



Nonlinear case: DDP/iterative LQRInitialization: Given     , pick a random control sequence                and obtain 
corresponding state sequence 

Iterative LQR (i-LQR)
x̂0 û0...ûT

x̂0...x̂T

8t

8t

8t
8t

8t

8t

ut = ût +Kt(xt � x̂T ) + kt



Nonlinear case: DDP/iterative LQR

Iterative LQR (i-LQR)

Linear approximation around        

Find                         so 
that                  minimizes the 
linear approximation

Go to the                        and

8t

8t

8t

8t

8t
x̂, û

�ut, t = 1...T

ût +�ut

x̂

0 = x̂+�xt û0 = û+�ut

Initialization: Given     , pick a random control sequence                and obtain 
corresponding state sequence 

x̂0 û0...ûT
x̂0...x̂T

8tut = ût +Kt(xt � x̂T ) + kt



Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR

Nonlinear case: DDP/iterative LQR
The quadratic approximation in invalid too far away from the reference trajectory

Nonlinear case: DDP/iterative LQR

line search for \alpha

Instead of finding the argmin i do a line search

Run forward pass with real nonlinear dynamics and ut = ût +Kt(xt � x̂T ) + ↵kt



• So far we have been planning (e.g. 100 steps) and then we close our eyes 
and hope our modeling was accurate enough..

• At convergence of iLQR and DDP, we end up with linearization around the 
(state, input) trajectory the algorithm converged to.

• In practice: the system could not be on this trajectory due to perturbations / 
initial state being off / dynamics model being off / …

• Can we handle such noise better?

Nonlinear case: DDP/iterative LQR



Model Predictive Control
• Yes! If we close the loop! Model predictive control!
• Solution: at time t when asked to generate control input u_t, we could re-

solve the control problem using iLQR or DDP over the time steps t through T

Case study: nonlinear model-predictive control

• Re-planning entire trajectory is often impractical  ->  in practice: replay over 
horizon H (receding horizon control)



i-LQR: When it works 
Cost: 

Direction for minimizing the cost

kxt � x

⇤k

x

⇤

xt



i-LQR: When it doesn’t work 

Cost:

Due to discontinuities of contact, the local search fails! Solution?
Initialize using a human demonstration instead of random!

kxt � x

⇤k

x

⇤

xt

Learning Dexterous manipulation Policies from Experience and Imitation, Kumar, Gupta, Todorov, Levine 2016



Time varying linear dynamics
Local models

t

reference trajectory
x̂t, ût, t = 1, ..., T



Time varying linear dynamics
Local models

t

f(xt, ut) ⇡ Atxt +Btut

At =
df

dxt
Bt =

df

dut

reference trajectory
learn time varying linear dynamics:

x̂t, ût, t = 1, ..., T
At,Bt



Time varying linear dynamics
Local models

t

f(xt, ut) ⇡ Atxt +Btut

At =
df

dxt
Bt =

df

dut

reference trajectory
learn time varying linear dynamics:

x̂t, ût, t = 1, ..., T
At,Bt

How do I get the data to fit my linear dynamics at each time step?
We execute the controller      at state      to explore how the world 
works in the vicinity of the reference trajectory! 

ut xt



Discrete and Continuous version

+D



Fitting Dynamics(1): Compute analytically derivatives of the 
“true” non-linear dynamics

• We may not have such analytic non linear dynamic equations available
• Very limiting: under modeling errors
• Complicated derivations



Fitting Dynamics(2): Finite Differences

We need 2 samples per state dimension



Fitting Dynamics(3): Linear regression

Use linear regression to fit A,B,D to samples

Use GMM priors as described in the lecture

+D



Learning Neural Network Policies with guided Policy Search under Unknown Dynamics, Levine and Abbeel 2014

Bayesian Linear dynamics fitting
Fit a Global Gaussian Mixture Model  using all samples                            
of all iterations and time steps. -> prior
Use current samples (from this iteration) and obtain Gaussian posterior  
for                    , which you condition to obtain                      .
Such prior results in 4 to 8 times less samples needed, despite the fact 
that it is not accurate enough by itself.

Posterior of mean and covariance where         are the empirical means and 
covariances and                    an inverse Wishart prior�, µ0, n0,m

µ̂, ⌃̂

p(xt+1|xt, ut)

(xt, ut, xt+1)

(xt, ut, xt+1)



One shot Learning of Manipulation Skills with Online Dynamic Adaptation and Neural Network Priors, Fu et al.

Fit a Global Model of Dynamics by fitting a Neural Network  using all 
samples                          of all iterations and time steps, and across 
multiple manipulation tasks->multi-task learning. 
Use model predictive control with iLQR for computing the policy at every 
time step. 
State is the robotic arm configuration and cost depends on a desired end-
effector pose. No object involved in the state.

Bayesian Linear dynamics fitting

(xt, ut, xt+1)



Time varying linear dynamics

Local models

We iteratively fit dynamics and update the policy. Why such iteration is 
important?
So that the space (state, action distribution) our dynamics are estimated is 
similar to the one our policy visits (last lecture).



Fitting time varying linear dynamics

Local models

• Can we further improve sample complexity? Right now each           
sample                     contributes in one linear model fitting. 

• Instead of linear regression use Bayesian linear regression!
(xt, ut, xt+1)


