Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Imitation Learning

Lecture 14, CMU 10703

Katerina Fragkiadaki

So far in the course

Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.

Good: simplest, cheapest form of supervision
Bad: High sample complexity
Where is it successful so far?
In simulation, where we can afford a lot of trials, easy to parallelize

not in robotic systems:
1. action execution takes long
2. we cannot afford to fail
3. safety concerns

Learning from Demonstration for Autonomous Navigation in Complex Unstructured

Reward shaping

|ldeally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

1.We will manually design them: “cost function design by hand remains one of the
black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.\We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping

|ldeally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?

2.\We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

_earning from Demonstrations

Learning from demonstrations a.k.a. Imitation Learning:

Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

a) coming up with a reward that would generate such behavior,
b) coding up the desired policy directly.

The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.

Does this remind us of something...?

GANSs! Generative Adversarial Networks (on state-action trajectories)

Discriminator

Generator

Noise
Source

Generative Adversarial Networks, Goodfellow et al. 2014

The Imitation Learning problem: Challenge

Actions along the trajectories are interdependent, as actions determine
state transitions and thus states and actions down the road.

iInterdependent labels -> structure prediction

Action interdependence in time:

Algorithms developed in Robotics for imitation learning found
applications in structured predictions problems, such as, sequence
generation/labelling e.g. parsing.

Imitation Learning

For taking this structure into account, numerous formulations have
been proposed:

 Direct: Supervised learning for (mapping states to actions)
using the demonstration trajectories as ground-truth(a.k.a.
behavior cloning) + ways to handle the neglect of action
interdependence.

Indirect: Learning the latent /goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (next lecture)

Experts can be:
- Humans

- Optimal or near Optimal Planners/Controllers

Outline

This lecture
- Behavior Cloning: Imitation learning as supervised learning
- Compounding errors
- Demonstration augmentation techniques
- DAGGER
- Structured prediction as Decision Making (learning to search)
 Imitating MCTS
Next lecture:
 Inverse reinforcement learning
- Feature matching
- Max margin planning
« Maximum entropy IRL

- Adversarial Imitation learning

Outline

This lecture

Behavior Cloning: Imitation learning as supervised learning

|mitation Learning for Driving

Driving policy: a mapping from (history of) observations to steering wheel
angles

llllllllllllllllllllll
224

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning as Supervised Learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

llllllllllllllllllllll
224

Behavior Cloning=Imitation Learning as Supervised learning
- Assume actions in the expert trajectories are 1.i.d.

- Train a classifier or regressor to map observations to actions at each
time step of the trajectory.

training supervised

| . 7T0(Ut|0t)
e earning

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Classifier or regressor?

Because multiple actions u may be plausible at any given observation o,
policy network pr, (u:|0:) usually is not a regressor but rather:

- Aclassifier (e.g., softmax output and cross-entropy loss, after
discretizing the action space)

——> > Ly(iy=k 10g[P(y:) = k|z(i); 0)]

1=1 k=1
- A GMM (mixture components weights, means and variances are

parametrized at the output of a neural net, minimize GMM loss, (e.g.,
Hand writing generation Graves 2013)

- A stochastic network (previous lecture)

Independent In time errors

TS

error at time t with probability €
E[Total errors] = €T

Compounding Errors

error at time t with probability €

E[Total errors] = (T + (T-1) + (T-2) + ...+ 1) &< T2

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

Data Distribution Mismatch!

P+ (0t) # Drg (01)

Expert trajectory

Data Distribution Mismatch!

supervised learning +

supervised learning control (NAIVE)

SL succeeds when training and test data distributions match, that is a
fundamental assumption.

Change p~-(o:) using demonstration augmentation!

Add examples in expert demonstration trajectories to
cover the states/observations points where the agent
will land when trying out its own policy.

Outline

This lecture
- Behavior Cloning: Imitation learning as supervised learning
- Compounding errors

- Demonstration augmentation techniques

Demonstration Augmentation: ALVINN 1989

Road follower

Road Intensity 45 Direction
Feedback Unit Output Units

-

8x32 Range Finder
Input Retina

Real Road Image Simulated Road Image

30x32 Video
Input Retina

« Using graphics simulator for road images and corresponding steering angle
ground-truth

* Online adaptation to human driver steering angle control
» 3 layers, fully connected layers, very low resolution input from camera and lidar..

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989

Demonstration Augmentation: NVIDIA 2016

Recorded

steering
wheel angle Adjust for shift Desired steering command
™ and rotation
i ~ Network
Left camera computed
. steering
y .\ - - d
Center camera ——» iigd%gﬁg:ft — CNN o
e, - F.
Right camera ‘?
Back propagation | ETor o]
weight adjustment Additional, left and right

cameras with automatic
grant-truth labels to
recover from mistakes

) kP
P — % S
— 14 4

| ;

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...”,

End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Data Augmentation (2): NVIDIA 2016

DAVE 2 Driving a Lincoln

- A convolutional neural network

- Trained by human drivers

- Learns perception, path planning, and control
"pixel in, action out”

- Front-facing camera is the only sensor

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not

sufficient. The network must learn how to recover from mistakes. ...”, End to End Learning for Self-
Driving Cars , Bojarski et al. 2016

Data Augmentation (3): ITrails 2015

Deep Network Outputs
Neural
Network

[%N
Turn Go Turn

Left Straight Right

trail

s_cam

s fa

Top view

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.

Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for

Mobile Robots Giusti et al.

Outline

This lecture
Behavior Cloning: Imitation learning as supervised learning
Compounding errors
Demonstration augmentation techniques

DAGGER

DAGGER (in simulation)

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train W@(Ut\Ot) from human data Dy = {01, Uty ..., ON, UN}

| run mo(uelot) to get dataset D, = {01,

3- ASk human to Iabel Dﬂ' With aCtiOnS ut Execute current policy and Query Expert

4. Aggregate: Dy« <— Dy« UD;,) ex\er/g;;“" ~ = =[G
Q\ (' = = ®
5. GOTO step 1. **-3:-,.3,.;&? +

Ne.w ‘ 2 Dataset All previous data
Policy £ « %)
Problems: | =0

- execute an unsafe/partially trained policy

- repeatedly query the expert

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

DAGGER (in a real platform)

Application on drones: given RGB from the drone camera predict
steering angles

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

DAGGER (in a real platform)

Application on drones : given RGB from the drone camera predict
steering angle

Caveats:

1. Interaction with the expert is hard: Is hard for the expert to provide
the right magnitude for the turn without feedback of his own actions!
Solution: provide him his visual feedback

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013

DAGGER (in a real platform)

Caveats:

1.

Is hard for the expert to provide the right magnitude for the turn
without feedback of his own actions! Solution: provide him his visual
feedback

. The expert’s reaction time to the drone’s behavior is large, this

causes imperfect actions to be commanded. Solution: play-back in
slow motion offline and record their actions.

Executing an imperfect policy causes accidents, crashes into
obstacles. Solution: safety measures which make again the data
distribution matching imperfect between train and test, but good
enough..

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013

Outline

This lecture
Behavior Cloning: Imitation learning as supervised learning
Compounding errors
Demonstration augmentation techniques
DAGGER

Structured prediction as Decision Making (learning to search)

Structured prediction

Structured prediction: a learner makes predictions over a set of interdependent
output variables and observes a joint loss.

Example: part of speech tagging

e monster ate the sandwich

NN Vb Dt NN

A structured prediction problem consists of an input space X', an output space

YV, a fixed but unknown distribution D over A X), and a non-negative /oss
function 1(y*,9) — R=% which measures the distance between the true y*and
predicted ¢ outputs. The goal of structured learning is to use [NV

samples (x;, yz)f\il to learn a mapping f : X —) that minimizes the expected

structured loss under D.

Structured prediction

Sequence labelling:
Part of speech tagging

the monster ate the sandwich

Dt NN Vb Dt NN

Structured prediction

Sequence labelling:
Part of speech tagging
NER (Name Entity Recognition)

= Yesterday I traveled to Lille

- PER - - LOC

Structured prediction

Sequence labelling:
Part of speech tagging
NER

Attentive Tracking

Structured prediction

Sequence labelling:
Part of speech tagging

NER GO () 8 [e Translate

Tracking

Thiz text has been automatically translated from Arabic:
Moscow stressed tone against Iran on its -

Sequence generation: =

nuclear program. He called Russian Foreign
Minister Tehram to take concrete steps to

Captlonlng restore confidence with the international e
]] community, to cooperate fully with the ITAEAL.
MaChlne tranSIathn Conversely Tehran expressed its willingness =

Translate text
csssitl Lgslsyy glay 0l py] wo Lging sSuge Zowi
Sl JLAT J| Ol b o dl g3 ahe Leog
oslnidly Jsud| zardl zo I85J1 Bolmiwd dugals
gl pgb Susl Joldlly Jdyjyddl dIlssdl ge Jals |
Paid il Slgderny plewd | SLATLY Lad | amiwl
cssaidl Lgila j091 pls bliwl byh o d5-Lall
from| Arabicto English BETA v| Translate

Optimizing Graphical Models for Structured prediction

Graph labelling : ////////
’/'/'/'/ | Labeling imag
 Encode output labels as a MRF 55 31708 709 g
wz%%%m%x/
* Learn parameters of that model to:
. @ ‘ . ‘ | Input variables
- maximize p(true labels | input) DIOIOIOIO

* minimize loss(true labels, predicted labels)

Let G = (V, E) be a graph such that

Y = (Y,)vcv, so that Y is indexed by the vertices of G. Then (X, Y) is a conditional random field when
the random variables Y, conditioned on X, obey the Markov property with respect to the graph:
p(Yy| X, Yy, w # v) = p(Yy| X, Yy, w ~ v), where w ~ v means that w and v are neighbors in G.

Optimizing Graphical Models for Structured prediction

» Encode output labels as a MRF ////////
’/'{'{'/ | Labeling imag
« Learn parameters of that model to: 7474/74747%/
maximize p(true labels | input) @ " Inputvariable
OISIOISIO

minimize loss(true labels, predicted labels)

 Assumed Independence assumptions may not hold

« Computationally intractable with too many “edges” or non-
decomposable loss functions (that involve many ys)

Instead: Decomposition of label

Sequence generation/labelling:

We can define an ordering and generate labels one at a time, where each
output generated depends on all previous ones. E.g., sequential data admits
the natural sequential ordering.

Image generation/labelling:
Here again we can define an ordering:

I 2

Pixel Recurrent Neural Networks, van den Oord et al

Structured prediction as sequential decision making

N decision
claifely

decision

clavely

decision

action

Structured prediction as sequential decision making

Structured prediction as sequential decision making

the monster ate the sandwich
Dt NN Vb Dt NN

- Example: Sequence labelling
- State: captures input sequence x and whatever labels (here part of
speech tags) we have produced so far
- Actions: Next label to output
- Policy: a mapping of the input x and labels generated so far to the next
abel
- Reward: agreement of the predicted \hat{y} with ground-truth y*: ¢e) = ¢(3*, v.)

Structured prediction as sequential decision making

Caption: A blue monster is eating a cookie

- Example: Image captioning

- State: captures the image and whatever words we have produced so far

- Actions: Next word to output

- Policy: a map of the state to the next word

- Reward: agreement of the predicted \hat{y} with ground-truth y*: ¢() = ¢(y*, y.)
-+ The loss here is not decomposable.

Structured prediction as sequential decision making

Sequence labelling:
Parsing
NER
Tracking

Sequence generation:
Captioning
Machine translation
Etc..

What function approximation shall we use for our state representations in
case of sequence/image labelling/generation?

Recurrent Neural Networks

- RNNs tie the weights at each time step

- Condition the neural network on all previous inputs

*In principle, any interdependencies can be modeled between inputs
and outputs, as well as between output labels.

- In practice, limitations from SGD training, capacity, initialization etc.

Vi1 Vi Vi+1
ht—l %‘ ht . ht+1 %
W W
| ® @ LR
0O S e | ®
> @ O O
Xt-1 Xt Xt+1

0o000| (ecee| (0000

Recurrent Neural Network (single hidden layer)

« Given list of vectors: X1, ...,T¢—1,Tt, LTtg1y .oy TT
* At a single time step:
hy = J(W(hh)ht_l 4+ W(h"”')az[t])

Uy = softmax(W(S) ht)

© |

)

R
O
(—1) B (®) @ : > : > Ut
O O
N
Xt h;

Recurrent Neural Networks

For sequence labelling problems, actions of the labelling policies are ¥, e.g.,
part of speech tags

t-1

o

heia

W

>

Xer1 ‘

(eeee| (ecocoo]

0000 >
=
(0000}~
o000

 S—

For sequence generation, actions of the labelling policies are Y+ = Z++1, e.qg.,
word in answer generation P(zii1 = vjlze, ..., 31) = G

=
s

~
~

+
=

ht—l % ht ’% ht+1
® ®
® ®
® ®

—
Xe-1 Xt Xt+1

leo00e| (00ee| |(coceoo]

Recurrent Neural Networks

The network is typically trained to maximize the log-likelihood of the output
sequences given the input sequences of a training set D = {(z'¥, y(¥)} :

0* = arg max log Z Py (y®, (D)
If the likelihood of an example decomposes over individual time steps:

log Py(y|z) = ZlOg Po(y¢|he)

Else loss is computed at the end of the sequence and is back
propagated through time.

A learned policy is the inference function of the model:
0(ht) = argmyaxP(yt = y|he; 0)

The reference policy is the policy that always outputs the true labels:

9*(ht) — Yt

Recurrent Neural Networks

The reqgular training procedure of RNNSs treat true labels Yt as actions
while making forward passes. Hence, the learning agent follows
trajectories generated by the reference policy rather than the learned
policy. In other words, it learns:

9*UP = arg m@in Ch~d « [lo(h)]

However, our true goal is to learn a policy that minimizes error under
Its own induced state distribution:

) = arg m@in h~d, Lo (h)]

Imitation Learning with Recurrent Neural Networks, Nyuyen 2016

DAGGER for sequence labelling/generation with RNNs

1: function TRAIN(NV,)

2 Intialize @ = 1.

3 Initialize model parameters 6.

4: for: =1..Ndo

5: Seta =a - p.

6: Randomize a batch of labeled examples.

7 for each example (z,y) in the batch do

8: Initialize ho = ®(X).

9: Initialize D = {(ho, y0)}-
10: fort=1...]Y|do
11: Uniformly randomize a floating-number 3 € [0, 1).
12: if o < 3 then
13: Use true label 41 = yz—1
14: else
15: Use predicted label: ¢, = argmax, P(y | ht—1;0).
16: end if
17: Compute the next state: hy = fo(hi—1,Jt—1).
18: Add example: D = D U {(h¢, yt) }-
19: end for
20: end for
21: Online update 6 by D (mini-batch back-propagation).
22: end for

23: end function

Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Bengio(Samy) et al.
Imitation Learning with Recurrent Neural Networks, Nyuyen 2016

Data augmentation(4):Mocap generation

Graves et al. 50

Mocap generation

Right: no augmentation, using only ground-truth input
Left: augmentation

Motion Generation

When you add noise to the input, despite the instantaneous error being
larger, the long term error is lower.

Demonstration Augmentation: Temporal subsampling

Gripper state Gripper state [rraErEs
- atnext atnext —| \inematics
time-step time-step

g $5T PR o Multilayer Multilayer
Dataset of trajectories LSTM NN | LSTM NN
for training e T I

Current state of

the environment Current state of
and gripper the environment
and gripper Robot performs the task in
Demonstration of the task Training an LSTM network real-world based on the trajectory
by user in the simulation on demonstrations generated by the network
Virtual world: training the network Physical world: inference from the network

« Two tasks considered: pick and place, move to desired pose

* Input x: the poses of all the objects in the seen (rotations, translations) and
the pose of the end effector

e Qutput y: the desired next pose of the end effector

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Demonstration Augmentation: Temporal subsampling

Gripper state Gripper state [rraErEs
- atnext atnext —| \inematics
time-step time-step

g $5T PR o Multilayer Multilayer
Dataset of trajectories LSTM NN | LSTM NN
for training e T I

Current state of

the environment Current state of
and gripper the environment
and gripper Robot performs the task in
Demonstration of the task Training an LSTM network real-world based on the trajectory
by user in the simulation on demonstrations generated by the network
Virtual world: training the network Physical world: inference from the network

* Supervision: expert trajectories in the simulator

* Data augmentation: consider multiple trajectories by subsampling in time the
expert ones, and by translating in space the end effector

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

RNNSs for Imitation(1)

smEDxp
(44 (%]

Mixtureidensity

(44 o

Mixture density

Training the LSTM-MDN network unrolled through time

€. €2 €150
Negative log Negative log Negative log
likelihood cost likelihood cost likelihood cost

(44 4]

Mixture density

g ——— parameters parameters parameters
LSTM LSTM LSTM
LSTM LSTM LSTM
LSTM LSTM LSTM
et’ qt et+'1’ qt+1 et+49’ ql+~49

Multimodality of actions-> GMM loss!

* Predict mixture weights over a Gaussian Mixture Model at the output
(alphas) and mean and variances for the mixture components.

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Recurrent Neural Networks for Imitation(1)

Multivariate Mixture draw a sample
of Gaussians
€t
Mixture density
parameters
Inverse
kKinematics
LSTM
_‘i_l
e Joint angles
LSTM
—— 1
R . B oy
LSTM
figo
® % 2
LSTM-MDN network performing the task in a closed loop

* Multimodality: predict mixture weights over a Gaussian Mixture
Model at the output (alphas) and mean and variances for the
mixture components. Minimize a GMM loss.

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Recurrent Neural Networks for Imitation(1)

’ﬁnl 2-- !-l ‘ =
A A / /! / et

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Y

Recurrent Neural Networks for Imitation(1)

Learning Manipulation Trajectories
Using Recurrent Neural Networks

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Learning to imitate Search

Task: playing Atari games
1. DQN :model free, knows nothing about the game dynamics
2. MCTS: performs better than DQN but!
a. takes too long per step to choose the action (too many trees to search)
b. assume access to the game simulator to " look ahead”
ldea: instead of learning from trial and error learn to imitate MCTS!
Let MCTS run for long enough to provide the ground-truth actions

Dealing with compounding errors: MCTS uses the current learnt policy to
unfold the tree

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, Guo et al

L earning to imitate MCTS (2)

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558 (14) 19 (0.3) 11574(44) 2273 (23) 672 (5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388 (4.6) 215(6.69) 601 (11) 19 (0.14) 13189 (35.3) 2701 (6.09) 670 (4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405 (12) 143 (6.7) 566 (10.2) 19 (0.3) 12755 (40.7) 1024 (13.8) 441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

B.Rider
7233

S.Invaders

2354

Breakout

406

Agent
UCT

Enduro Pong
788 21

Q*bert
18850

Seaquest

3257

but... 800 games * 1000 actions/game * 10000
rollouts/action * 300 steps/rollout = 2.4e12 steps

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, Guo et al

Outline

This lecture
- Behavior Cloning: Imitation learning as supervised learning
- Compounding errors
- Demonstration augmentation techniques
- DAGGER
- Structured prediction as Decision Making (learning to search)
 Imitating MCTS
Next lecture:
 Inverse reinforcement learning
- Feature matching
- Max margin planning
« Maximum entropy IRL

- Adversarial Imitation learning

