
Imitation Learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Lecture 14, CMU 10703

So far in the course
Reinforcement Learning: Learning policies guided by sparse rewards, e.g.,
win or not the game.
• Good: simplest, cheapest form of supervision
• Bad: High sample complexity

Learning from Demonstration for Autonomous Navigation in Complex Unstructured

Crusher robot

Where is it successful so far?
• in simulation, where we can afford a lot of trials, easy to parallelize
• not in robotic systems:

1. action execution takes long
2. we cannot afford to fail
3. safety concerns

Reward shaping
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1.We will manually design them: “cost function design by hand remains one of the

’black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Reward shaping
Ideally we want dense in time rewards to closely guide the agent closely along the way.

Who will supply those shaped rewards?
1.We will manually design them: “cost function design by hand remains one of the

’black arts’ of mobile robotics, and has been applied to untold numbers of robotic
systems”

2.We will learn them from demonstrations: “rather than having a human expert tune a
system to achieve desired behavior, the expert can demonstrate desired behavior and
the robot can tune itself to match the demonstration”

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain, Silver et al. 2010

Learning from Demonstrations

Learning from demonstrations a.k.a. Imitation Learning:
Supervision through an expert (teacher) that provides a set of
demonstration trajectories: sequences of states and actions.

Imitation learning is useful when is easier for the expert to
demonstrate the desired behavior rather than:

a) coming up with a reward that would generate such behavior,
b) coding up the desired policy directly.

The Imitation Learning problem

The agent (learner) needs to come up with a policy whose
resulting state, action trajectory distribution matches the expert
trajectory distribution.

Generative Adversarial Networks, Goodfellow et al. 2014

GANs! Generative Adversarial Networks (on state-action trajectories)
 Does this remind us of something…?

The Imitation Learning problem: Challenge

Actions along the trajectories are interdependent, as actions determine
state transitions and thus states and actions down the road.

interdependent labels -> structure prediction

1. run away
2. ignore
3. pet

Terminology & notation

Action interdependence in time:

Algorithms developed in Robotics for imitation learning found
applications in structured predictions problems, such as, sequence
generation/labelling e.g. parsing.

Imitation Learning

For taking this structure into account, numerous formulations have
been proposed:

• Direct: Supervised learning for policy (mapping states to actions)
using the demonstration trajectories as ground-truth(a.k.a.
behavior cloning) + ways to handle the neglect of action
interdependence.

• Indirect: Learning the latent rewards/goals of the teacher and
planning under those rewards to get the policy, a.k.a. Inverse
Reinforcement Learning (next lecture)

 Experts can be:

• Humans

• Optimal or near Optimal Planners/Controllers

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

Imitation Learning for Driving

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning as Supervised Learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Driving policy: a mapping from (history of) observations to steering wheel
angles

Behavior Cloning=Imitation Learning as Supervised learning
• Assume actions in the expert trajectories are i.i.d.
• Train a classifier or regressor to map observations to actions at each

time step of the trajectory.

End to End Learning for Self-Driving Cars, Bojarski et al. 2016

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Classifier or regressor?
Because multiple actions u may be plausible at any given observation o,
policy network usually is not a regressor but rather:

• A classifier (e.g., softmax output and cross-entropy loss, after
discretizing the action space)

•

• A GMM (mixture components weights, means and variances are
parametrized at the output of a neural net, minimize GMM loss, (e.g.,
Hand writing generation Graves 2013)

• A stochastic network (previous lecture)DAGGER, SEARN, SMILE[24, 10, 21]) that interleave policy execution and learning

p⇡✓ (ut|ot)

J(✓) = �
mX

i=1

KX

k=1

1y(i)=k log[P (y(i) = k|x(i); ✓)]

Independent in time errors

error at time t with probability ε
E[Total errors] ≲ εT

Compounding Errors

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

error at time t with probability ε

E[Total errors] ≲ ε(T + (T-1) + (T-2) + …+ 1) ∝ εT2

Data Distribution Mismatch!
4 CHAPTER 1. INTRODUCTION

Expert trajectory
Learned Policy

No data on
how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally di↵erent issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

p⇡⇤(ot) 6= p⇡✓ (ot)

Data Distribution Mismatch!

supervised learning supervised learning +
control (NAIVE)

train (x,y) ~ D s ~ dπ*

test (x,y) ~ D s ~ dπ

SL succeeds when training and test data distributions match, that is a
fundamental assumption.

Solutions

Change using demonstration augmentation!

Add examples in expert demonstration trajectories to
cover the states/observations points where the agent
will land when trying out its own policy.

p⇡⇤
(ot)

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

Demonstration Augmentation: ALVINN 1989

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989

• Using graphics simulator for road images and corresponding steering angle
ground-truth

• Online adaptation to human driver steering angle control
• 3 layers, fully connected layers, very low resolution input from camera and lidar..

Road follower

Demonstration Augmentation: NVIDIA 2016

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. …”,

End to End Learning for Self-Driving Cars , Bojarski et al. 2016

Why did that work?

Bojarski et al. ‘16, NVIDIA

Additional, left and right
cameras with automatic
grant-truth labels to
recover from mistakes

Data Augmentation (2): NVIDIA 2016

add Nvidia video

“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. …”, End to End Learning for Self-
Driving Cars , Bojarski et al. 2016

Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots Giusti et al.

Data Augmentation (3): Trails 2015

A Machine Learning Approach to Visual Perception of Forest Trails for
Mobile Robots Giusti et al.

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

Dataset AGGregation: bring learner’s and expert’s trajectory distributions closer
by labelling additional data points resulting from applying the current policy

1. train from human data

2. run to get dataset

3. Ask human to label with actions

4. Aggregate:

5. GOTO step 1.

DAGGER (in simulation)

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data
Aggregate
Dataset

Steering
from expert

New
Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test
Execu*on

Collect
Data

No‐Regret
Online Learner

Expert

Learned
Policy Done?

yes no
iπ̂

Best
Policy

iπ̂

e.g. Gradient
Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use �
1

= 1 so that we do

not have to specify an initial policy ⇡̂
1

before getting data from the expert’s behavior.

Then we could choose �i = pi�1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {�i} be a sequence

such that �N = 1

N

PN
i=1

�i ! 0 as N ! 1. The simple, parameter-free version of the

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross et al. 2011

DAGGER, SEARN, SMILE[24, 10, 21]) that interleave policy execution and learning

Problems:

⇡✓(ut|ot)

ut

⇡✓(ut|ot) D⇡ = {o1, ..., oM}

D⇡

D⇡⇤ = {o1, u1, ..., oN , uN}

D⇡⇤ D⇡⇤ [D⇡

• execute an unsafe/partially trained policy
• repeatedly query the expert

Application on drones: given RGB from the drone camera predict
steering angles

DAGGER (in a real platform)

Learning monocular reactive UAV control in cluttered natural environments, Ross et al. 2013

Application on drones : given RGB from the drone camera predict
steering angle

Caveats:

1. Interaction with the expert is hard: Is hard for the expert to provide
the right magnitude for the turn without feedback of his own actions!
Solution: provide him his visual feedback

DAGGER (in a real platform)

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013

Caveats:

1. Is hard for the expert to provide the right magnitude for the turn
without feedback of his own actions! Solution: provide him his visual
feedback

2. The expert’s reaction time to the drone’s behavior is large, this
causes imperfect actions to be commanded. Solution: play-back in
slow motion offline and record their actions.

3. Executing an imperfect policy causes accidents, crashes into
obstacles. Solution: safety measures which make again the data
distribution matching imperfect between train and test, but good
enough..

DAGGER (in a real platform)

Learning monocular reactive uav control in cluttered natural environments, Ross et al. 2013

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

Structured prediction
Structured prediction: a learner makes predictions over a set of interdependent
output variables and observes a joint loss.
Example: part of speech tagging

A structured prediction problem consists of an input space , an output space
 , a fixed but unknown distribution over , and a non-negative loss
function which measures the distance between the true and
predicted outputs. The goal of structured learning is to use
samples to learn a mapping that minimizes the expected
structured loss under .

X
X ⇥ Y

f : X ! Y

D

D

Y
l(y⇤, ŷ) ! R�0 y⇤
ŷ N
(xi, yi)

N
i=1

Sequence labeling

The monster ate a big sandwich

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - - LOC

image cr edit: Ri chard Pa dgett

 Sequence labelling:
Part of speech taggingSequence labeling

The monster ate a big sandwich

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - - LOC

i
m
a
g
e

c
r
e
d
i
t
:

R
i
c
h
a
r
d

P
a
d
g
e
t
t

Structured prediction

 Sequence labelling:
Part of speech tagging
NER (Name Entity Recognition)

Sequence labeling

The monster ate a big sandwich

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - - LOC

i
m
a
g
e

c
r
e
d
i
t
:

R
i
c
h
a
r
d

P
a
d
g
e
t
t

Structured prediction

 Sequence labelling:
Part of speech tagging
NER
Attentive Tracking

Structured prediction

 Sequence labelling:
Part of speech tagging
NER
Tracking

Sequence generation:
Captioning
Machine translation

Machine translation

Structured prediction

Optimizing Graphical Models for Structured prediction

Graph labelling

• Encode output labels as a MRF

• Learn parameters of that model to:

• maximize p(true labels | input)

• minimize loss(true labels, predicted labels)

Optimizing Graphical Models for Structured prediction

• Encode output labels as a MRF

• Learn parameters of that model to:

• maximize p(true labels | input)

• minimize loss(true labels, predicted labels)

• Assumed Independence assumptions may not hold

• Computationally intractable with too many “edges” or non-
decomposable loss functions (that involve many ys)

Instead: Decomposition of label
Sequence generation/labelling:

We can define an ordering and generate labels one at a time, where each
output generated depends on all previous ones. E.g., sequential data admits
the natural sequential ordering.

Image generation/labelling:
Here again we can define an ordering:

Decomposition of label
● Decomposition of y often implies an ordering

● But sometimes not so obvious....

I can can a can

Pro Md Vb Dt Nn

i
m
a
g
e

c
r
e
d
i
t
:

W
i
k
i
p
e
d
i
a

&

A
s
h
u
t
o
s
h

S
a
x
e
n
a

(we'll come

back to this

case later...)

Pixel Recurrent Neural Networks, van den Oord et al

Structured prediction as sequential decision making

When y decomposes in an ordered manner, a sequential decision making
process emerges

Search spaces
● When y decomposes in an ordered manner,

a sequential decision making process emerges

I

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

decision

action
decision

action
decision

action

Structured prediction as sequential decision making

When y decomposes in an ordered manner, a sequential decision making
process emerges

Structured prediction as sequential decision making

• Example: Sequence labelling
• State: captures input sequence x and whatever labels (here part of

speech tags) we have produced so far
• Actions: Next label to output
• Policy: a mapping of the input x and labels generated so far to the next

label
• Reward: agreement of the predicted \hat{y} with ground-truth y*:

Sequence labeling

The monster ate a big sandwich

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - - LOC

i
m
a
g
e

c
r
e
d
i
t
:

R
i
c
h
a
r
d

P
a
d
g
e
t
t

Structured prediction as sequential decision making

• Example: Image captioning
• State: captures the image and whatever words we have produced so far
• Actions: Next word to output
• Policy: a map of the state to the next word
• Reward: agreement of the predicted \hat{y} with ground-truth y*:
• The loss here is not decomposable.

Caption: A blue monster is eating a cookie

 Sequence labelling:
Parsing
NER
Tracking

Sequence generation:
Captioning
Machine translation
Etc..

What function approximation shall we use for our state representations in
case of sequence/image labelling/generation?

Structured prediction as sequential decision making

Recurrent Neural Networks
• RNNs tie the weights at each time step

• Condition the neural network on all previous inputs
• In principle, any interdependencies can be modeled between inputs

and outputs, as well as between output labels.
• In practice, limitations from SGD training, capacity, initialization etc.

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

Recurrent Neural Network (single hidden layer)

• Given list of vectors:
• At a single time step:

Recurrent	Neural	Network	language	model

4/21/16Richard	Socher10

Given	list	of	word	vectors:

At	a	single	time	step:

xt ht

ßà

x1, ..., xt�1, xt, xt+1, ..., xT

h

t

= �

�
W

(hh)
h

t�1 +W

(hx)
x[t]

�

ŷt = softmax

�
W (S)ht

�

Recurrent Neural Networks
Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

For sequence labelling problems, actions of the labelling policies are , e.g.,
part of speech tags

For sequence generation, actions of the labelling policies are , e.g.,
word in answer generation

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1

yt

yt = xt+1
P̂ (xt+1 = vj |xt, ..., x1) = ŷt,j

The network is typically trained to maximize the log-likelihood of the output
sequences given the input sequences of a training set

If the likelihood of an example decomposes over individual time steps:

Else loss is computed at the end of the sequence and is back
propagated through time.

A learned policy is the inference function of the model:

The reference policy is the policy that always outputs the true labels:

Recurrent Neural Networks

✓

⇤
= argmax

✓

log

X

(x(i)
,y

(i))2D

P

✓

(y

(i)
, x

(i)
)

D = {(x(i)
, y

(i))} :

logP✓(y|x) =
X

t

logP✓(yt|ht)

ˆ✓(ht) = argmax

y
P (yt = y|ht; ✓)

✓⇤(ht) = yt

Recurrent Neural Networks

The regular training procedure of RNNs treat true labels as actions
while making forward passes. Hence, the learning agent follows
trajectories generated by the reference policy rather than the learned
policy. In other words, it learns:

However, our true goal is to learn a policy that minimizes error under
its own induced state distribution:

Imitation Learning with Recurrent Neural Networks, Nyuyen 2016

✓̂ = argmin
✓

Eh⇠d✓ [l✓(h)]

✓̂sup = argmin
✓

Eh⇠d⇡⇤ [l✓(h)]

yt

DAGGER for sequence labelling/generation with RNNs

Imitation Learning with Recurrent Neural Networks, Nyuyen 2016
Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Bengio(Samy) et al.

Data augmentation(4):Mocap generation

50

noisenoise

decode1

lstm3

lstm2

lstm1

encode1

decode1

lstm3

lstm2

lstm1

encode1

Graves et al.

Mocap generation

Right: no augmentation, using only ground-truth input
Left: augmentation

When you add noise to the input, despite the instantaneous error being
larger, the long term error is lower.

Demonstration Augmentation: Temporal subsampling

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

• Two tasks considered: pick and place, move to desired pose
• Input x: the poses of all the objects in the seen (rotations, translations) and

the pose of the end effector
• Output y: the desired next pose of the end effector

Demonstration Augmentation: Temporal subsampling

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

• Supervision: expert trajectories in the simulator
• Data augmentation: consider multiple trajectories by subsampling in time the

expert ones, and by translating in space the end effector

RNNs for Imitation(1)

• Multimodality of actions-> GMM loss!

• Predict mixture weights over a Gaussian Mixture Model at the output
(alphas) and mean and variances for the mixture components.

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Recurrent Neural Networks for Imitation(1)

• Multimodality: predict mixture weights over a Gaussian Mixture
Model at the output (alphas) and mean and variances for the
mixture components. Minimize a GMM loss.

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Recurrent Neural Networks for Imitation(1)

https://www.youtube.com/watch?v=9vYlIG2ozaM

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Recurrent Neural Networks for Imitation(1)

https://www.youtube.com/watch?v=9vYlIG2ozaM

Learning real manipulation tasks from virtual demonstrations using LSTM, Rahmatizadeh et al 2016

Learning to imitate Search

Task: playing Atari games

1. DQN :model free, knows nothing about the game dynamics

2. MCTS: performs better than DQN but!

a. takes too long per step to choose the action (too many trees to search)

b. assume access to the game simulator to ``look ahead”

Idea: instead of learning from trial and error learn to imitate MCTS!

Let MCTS run for long enough to provide the ground-truth actions

Dealing with compounding errors: MCTS uses the current learnt policy to
unfold the tree

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, Guo et al

Learning to imitate MCTS (2)

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, Guo et al

Table 1: Performance (game scores) of the four real-time game playing agents, where UCR is short for UCT-
toRegression, UCC is short for UCTtoClassification, and UCC-I is short for UCTtoClassification-Interleaved.

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders

DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075

UCC 5342 (20) 175 (5.63) 558 (14) 19 (0.3) 11574(44) 2273 (23) 672 (5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680

UCC-I 5388 (4.6) 215 (6.69) 601 (11) 19 (0.14) 13189 (35.3) 2701 (6.09) 670 (4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692

UCR 2405 (12) 143 (6.7) 566 (10.2) 19 (0.3) 12755 (40.7) 1024 (13.8) 441 (8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders

UCT 7233 406 788 21 18850 3257 2354

The columns correspond to the seven games named in the header, and the rows correspond to differ-
ent assessments of the four agents. Throughout the table, the numbers in parentheses are standard-
errors. The DQN row reports the average performance (game score) of the DQN agent (a random
action is chosen 5% of the time during testing). The DQN-best row reports the best performance
of the DQN agent over all the attempts at each game. Comparing the performance of the UCT-
toClassification and UCTtoRegression agents (both use 5% exploration), we see that the UCTto-
Classification agent either competes well with or significantly outperforms the UCTtoRegression
agent. More importantly the UCTtoClassification agent outperforms the DQN agent in all games
but Pong (in which both agents do nearly perfectly because the maximum score in this game is 21).
The percentage-performance gain of UCTtoClassification over DQN is quite large for most games.
Similar gains are obtained in the comparison of UCTtoClassification-best to DQN-best.

We used 5% exploration in our agents to match what the DQN agent does, but it is not clear why
one should consider random action selection during testing. In any case, the effect of this ran-
domness in action-selection will differ across games (based, e.g., on whether a wrong action can
be terminal). Thus, we also present results for the UCTtoClassification-greedy agent in which we
don’t do any exploration. As seen by comparing the rows corresponding to UCTtoClassification
and UCTtoClassification-greedy, the latter agent always outperforms the former and in four games
(Breakout, Enduro, Q*Bert, and Seaquest) achieves further large-percentage improvements.

Table 2 gives the performance of our non-realtime UCT agent (again, with 5% exploration). As
discussed above we selected UCT-agent’s parameters to ensure that this agent outperforms the DQN
agent allowing room for our agents to perform in the middle.

Finally, recall that the UCTtoClassification-Interleaved agent was designed so that its input distribu-
tion during training is more likely to match its input distribution during evaluation and we hypothe-
sized that this would improve performance relative to UCTtoClassification. Indeed, in all games but
B. Rider, Pong and S.Invaders in which the two agents perform similarly, UCTtoClassification-
Interleaved significantly outperforms UCTtoClassification. The same holds when comparing
UCTtoClassification-Interleaved-best and UCTtoClassification-best as well as UCTtoClassification-
Interleaved-greedy and UCTtoClassification-greedy.

Overall, the average game performance of our best performing agent (UCTtoClassification-
Interleaved) is significant higher than that of DQN for most games, such as B.Rider (32%), Breakout
(28%), Enduro (28%), Q*Bert (580%), Sequest (58%) and S.Invaders (15%).

In a further preliminary exploration of the effectiveness of the UCTtoClassification-Interleaved
in exploiting additional computational resources for generating UCT runs, on the game Enduro
we compared UCTtoClassification and UCTtoClassification-Interleaved where we allowed each of
them twice the number of UCT runs used in producing the Table 1 above, i.e., 1600 runs while

6

but… 800 games * 1000 actions/game * 10000
rollouts/action * 300 steps/rollout = 2.4e12 steps

Outline
This lecture

• Behavior Cloning: Imitation learning as supervised learning

• Compounding errors

• Demonstration augmentation techniques

• DAGGER

• Structured prediction as Decision Making (learning to search)

• Imitating MCTS

Next lecture:

• Inverse reinforcement learning

• Feature matching

• Max margin planning

• Maximum entropy IRL

• Adversarial Imitation learning

