
Learning to learn, Low shot
learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Supervised learning
training

x Y

1

0

1

1

0

0

Supervised learning

x Y

1

0

1

1

0

0

training

y = f(x; ✓)

Supervised learning

x Y

1

0

1

1

0

0

training
test

?

?y = f(x; ✓)

Supervised learning

x Y

1

0

1

1

0

0

training
test

?

?

Generalization corresponds to the capacity to make
predictions about the behavior of the target function
at novel points.

y = f(x; ✓)

Supervised learning

x Y

1

0

1

1

0

0

training
test

?

?

Human intelligence though is considered
remarkable for its ability to generalize to new tasks,
as opposed to new instances of the same task!

y = f(x; ✓)

Learning to learn (meta-learning)

x Y
training test

?

?

Task-1 Solution-1

Task-2

Task-3

Task-4

Solution-2

Solution-3

Solution-4

New Task

Another New Task

Human intelligence though is considered
remarkable for its ability to generalize to new
tasks, as opposed to new instances of the same
task!
Examples: recognizing your classmates, finding
the classroom, the exit, the restroom in a new
building.

Multi-task/transfer learning VS learning to learn

x Y
training test

?

?

Task-1 Solution-1

Task-2

Task-3

Task-4

Solution-2

Solution-3

Solution-4

New Task

Another New Task

Multi-task learning: how to rely on previous tasks so as to solve the new task
faster, e.g., progressive nets (for effective feature sharing and augmenting), or
hierarchical RL for re-using skills.
Learning to learn in addition adds learning to the hand designed parts of the
above setups, that is how many iterations/examples/experience your need to
master the new skill. Mastering the new skill becomes a learning problem itself.

Multi-task/transfer learning VS learning to learn

x Y
training test

?

?

Task-1 Solution-1

Task-2

Task-3

Task-4

Solution-2

Solution-3

Solution-4

New Task

Another New Task

Multi-task learning: learn to walk for various speeds towards various
directions. I train a policy parameterized also by the goal, at test time I provide
a new goal and i expect good performance.
Learning to learn: I train a policy network, that given a particular goal (walking
speed and direction), learns to master the skill after K episodes of experience.

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• One shot imitation learning
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• Learn a policy for learning a new task fast (within a specified window

of experience)
• One shot learning using compositional neural network architectures

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• One shot imitation learning
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• Learn a policy for learning a new task fast (within a specified window

of experience)
• One shot learning using compositional neural network architectures

Learning by gradient descent

We have a function parametrized by \theta, and an objective function f(\theta),
an initial starting point \theta_0, and want to take steps in our parameter space
to minimize our loss function:

Why we need learning the parameter update rule?

A zoo of parameter update rules

gradient descent (GD):
A variety of hand-designed update rules guided by human intuition:

✓ = ✓ � ⌘ ·r✓f(✓)

A zoo of parameter update rules

gradient descent (GD):

GD with momentum:

A variety of hand-designed update rules guided by human intuition:

✓ = ✓ � ⌘ ·r✓f(✓)

⌫t = �⌫t�1 + ⌘r✓f(✓)

✓ = ✓ � ⌫t

A zoo of parameter update rules

Nesterov accelerated gradient

gradient descent (GD):

GD with momentum:

A variety of hand-designed update rules guided by human intuition:

✓ = ✓ � ⌘ ·r✓f(✓)

⌫t = �⌫t�1 + ⌘r✓f(✓)

✓ = ✓ � ⌫t

⌫t = �⌫t�1 + ⌘r✓f(✓ � �⌫t�1)

✓ = ✓ � ⌫t

A zoo of parameter update rules
Adagrad:
It adapts the learning rate to the parameters, performing larger updates for
infrequent and smaller updates for frequent parameters.

A zoo of parameter update rules
Adagrad:
It adapts the learning rate to the parameters, performing larger updates for
infrequent and smaller updates for frequent parameters.

You do not need to tune the l.r.! Problem: towards the end, l.r. becomes infinitely
small.

 here is a diagonal matrix where each diagonal element i, i is the sum of
the squares of the gradients w.r.t. up to time step while is a smoothing
term that avoids division by zero (usually on the order of).

Gt 2 Rd⇥d

✓i t = 24 ✏
1e� 8

A zoo of parameter update rules
Adagrad:
It adapts the learning rate to the parameters, performing larger updates for
infrequent and smaller updates for frequent parameters.

You do not need to tune the l.r.! Problem: towards the end, l.r. becomes infinitely
small.

Adadelta instead of accumulating all past squared gradients, Adadelta restricts
the window of accumulated past gradients to some fixed size. RMSProp is very
similar.

 here is a diagonal matrix where each diagonal element i, i is the sum of
the squares of the gradients w.r.t. up to time step while is a smoothing
term that avoids division by zero (usually on the order of).

Gt 2 Rd⇥d

✓i t = 24 ✏
1e� 8

A zoo of parameter update rules
Adam:
Adaptive Moment Estimation, it keep exponentially decaying average of both
shares of gradients and their averages:

http://sebastianruder.com/optimizing-gradient-descent/index.html#gradientdescentvariants

http://sebastianruder.com/optimizing-gradient-descent/index.html#gradientdescentvariants

Learning Rate tuning

Results by Yijie Wang

Inception v2 in Imagenet
classification task

Learning [(Supervised) Learning by gradient descent]

Idea: what if we learnt such an update rule so that we get the most out of our
parameter updates?

We will parametrize the optimizer! is our learnable parameters! �

Learning [Learning by gradient descent]
Idea: what if we learnt such an update rule so that we get the most out of our
parameter updates?

We will parametrize the optimizer! \Phi is our learnable parameters!

Loss function for the optimizer: the resulting \theta* weights should do well:

Apart from the final value \theta*, let’s consider a whole trajectory of thetas doing
well:

Idea: what if we learnt such an update rule so that we get the most out of our
parameter updates?

We will parametrize the optimizer! is our learnable parameters!

Loss function for the optimizer: the resulting weights should do well:

Learning [Learning by gradient descent]

�

✓⇤

Learning [Learning by gradient descent] by gradient
descent
We will update \phi using gradient descent! Sample some objective f, and initial
\theta_0 and propagate gradients through the following computational graph:

Learning [Learning by gradient descent] by gradient
descent
We will update \phi using gradient descent! Sample some objective f, and initial
\theta_0 and propagate gradients through the following computational graph:

fast weights:
slow weights:

\theta
 \phi

Only through the solid edges! The gradient of f do not depend of how well the
optimization is going! We only update \phi

Learning [Learning by gradient descent] by gradient
descent
Our optimizer is actually a Recurrent Neural network: h is the hidden state which
changes from every update step and remembers information regarding past
gradients:

Learning [Learning by gradient descent] by gradient
descent
Our optimizer is actually a Recurrent Neural network: h is the hidden state which
changes from every update step and remembers information regarding past
gradients (of f w.r.t.)✓

Learning [Learning by gradient descent] by gradient
descent

We apply the update rule in each parameter in isolation, in this way we can
transfer the learnt update rule across problems of different type of networks.
Each LSTM optimizer has the same but different hidden state!

Our optimizer is actually a Recurrent Neural network: h is the hidden state which
changes from every update step and remembers information regarding past
gradients (of f w.r.t.)✓

�

Comparing learnt and hand crafted update rules

Comparing learnt and hand crafted update rules

These may look like toy examples..

Face alignment
Task: starting from an initial landmark template configuration , get to desired
alignment

x0
x⇤

Task: starting from an initial landmark template configuration , get to desired
alignment

Loss function:

Face alignment
x0

x⇤

Loss function:

: SIFT features extracted around the landmarks

Task: starting from an initial landmark template configuration , get to desired
alignment

Face alignment
x0

x⇤

h(d(x0 +�x))

2nd order Taylor expansion:

Newton’s method for face alignment
Task: starting from an initial landmark template configuration x_0, get to desired
alignment x_*

2nd order Taylor expansion:

Task: starting from an initial landmark template configuration x_0, get to desired
alignment x_*

Newton’s method for face alignment

Supervised Newton’s method

Idea: instead of using the Hessian and Jacobian to estimate R_k,b_k, let’s
estimate it from training data: pairs of images and desired landmark locations x*

• At each iteration, move the landmarks according to predicted

• And minimize for the remaining residual:

Supervised Newton’s method

Rk�1,bk�1

Supervised Newton’s method

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• One shot imitation learning
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• Learn a policy for learning a new task fast (within a specified window

of experience)
• One shot learning using compositional neural network architectures

Imitation learning

Idea: Learn a policy network that, given a description of a new (related) task
in the form of a single demonstration, and an initial observation, performs
the task (outputs the right action sequence).

Imitation learning

At training time, we are given pairs of demonstrations of related but not
identical tasks. The policy network, conditioned on the first demonstration
and the first observation of the second demonstration, learns to mimic the
second demonstration. The policy net is trained using behavior cloning/
DAGGER.

Imitation learning

Alternatively, instead of providing a second demonstration we could have
provided a reward function and train the policy network conditioned on the
first demonstration and a new observation to carry out the desired task
using RL (trail and error). But imitation is faster.

Reaching Task

Appealing! We learn what is the essence of the demonstration using input output
pairs: e.g., if i’m demonstrated how to hit the ball, I know that i should focus on
the bouncing as opposed to the breathing of the expert, because this is gonna
help me carry out the mimicking of the second demonstration.

• The robot is a point mass controlled with 2-dimensional force.
• The family of tasks is to reach a target landmark.
• The identity of the landmark differs from task to task, and the model has to

figure out which target to pursue based on the demonstration.

Reaching Task

Appealing! We learn what is the essence of the demonstration using input output
pairs: e.g., if i’m demonstrated how to hit the ball, I know that i should focus on
the bouncing as opposed to the breathing of the expert, because this is gonna
help me carry out the mimicking of the second demonstration.

• Observations: the agent’s 2D location and the 2D locations of the landmarks
• Actions: 2D force applied to the agent
• The family of tasks is to reach a target landmark.
• The identity of the landmark differs from task to task, and the model has to

figure out which target to pursue based on the demonstration.

Reaching Task

• The robot is a point mass controlled with 2-dimensional force.
• The family of tasks is to reach a target landmark.
• The identity of the landmark differs from task to task, and the model has to

figure out which target to pursue based on the demonstration.

If you have only a single demonstration of the task, how do you know that the
essence is to approach the green triangle as opposed to go towards the lower
right corner of the board? or to avoid the blue asterisk?
You don’t know! But here you have multiple demo pairs to learn from!

Stacking tower task

• Observations: (x,y,z) positions of the objects relative to the gripper, whether
gripper is pen or closed

• Actions: 7 DOF fetch arm torques
• The family of tasks is to stack variable number of cuboids into tower

configurations
• The number of cuboids differs from task to task! We need to generalize

across the number of cubes!

Architecture of the policy network
• Input: a demonstration and an initial state x

• Output: corresponding action

• Plain LSTM: it parses the demonstration trajectory of state/actions (one tilmestep at a
time), the output hidden state is concatenated with the current state. to predict the action.

at

st

s⇤0, a
⇤
0 s⇤2, a

⇤
2s⇤1, a

⇤
1 s⇤n�1, a

⇤
n�1

Architecture of the policy network
• Input: a demonstration and an initial state x

• Output: corresponding action

• Plain LSTM: it parses the demonstration trajectory of state/actions
(one tilmestep at a time), the output hidden state is concatenated
with the current state. to predict the action.

s⇤0, a
⇤
0 s⇤2, a

⇤
2s⇤1, a

⇤
1 s⇤n�1, a

⇤
n�1

at

st

Architecture of the policy network
• Input: a demonstration and an initial state x

• Output: corresponding action

• LSTM with attention: at each time step, based on the hidden state,
we can ``attend” in different parts of the demo trajectory (our
memory). The attention forms a weight distribution over memory
locations.

LSTM with Attention

• LSTM with attention: at each time step, based on the hidden state,
we can ``attend” in different parts of the demo trajectory (our
memory). The attention forms a weight distribution over memory
locations.

Neighborhood Attention-one per object

• LSTM with attention: at each time step, based on the hidden state, we
compute a set of embeddings, one for each block present in the state. this
operation allows each block to query other blocks in relation to itself (e.g.
find the closest block), and extract the queried information

Demonstration Memory

over your memory embedding vectors.

corresponding context and query vectors.

The embedding grows linearly with the demo
length and number of blocks.

Context Embedding and policy net

over your memory embedding vectors.

corresponding context and query vectors.

One shot imitation learning

over your memory embedding vectors.

corresponding context and query vectors.

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• One shot imitation learning
• Learn a policy for learning a new task fast (within a specified window

of experience)
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• One shot learning using compositional neural network architectures

Reinforcement learning: master a task by interaction with the environment.
Big question: exploration-exploitation.
The most principled way would be to maintain a distribution over actions and
sample actions according to that (in the beginning we are uncertain, the
distribution is close to uniform and we explore a lot, and as time goes by we
explore more and we converge).
Often, we pick exploration policies arbitrarily, e.g., -greedy. This results in
large number of samples.

✏

Reinforcement learning: master a task by interaction with the environment.
Big question: exploration-exploitation.
Idea: What if we learn the exploration strategy itself? What if our learning
objective is not doing well in a specific task but doing fast RL of any task:
mastering a task with few interactions with the environment.

RL VS Learning RL
RL
Each time an episode is
unrolled, reward is observed,
policy is updated
Objective: maximize the
expected total discounted
reward accumulated during a
single episode
No memory across episodes
other than the policy’s updated
parameters

RL VS Learning RL
Learning RL
Each time, a series of episodes is
experienced, reward is observed, policy is
updated. Policy is updated at the end of
the interaction budget (a specific number of
episodes) given to me to master the task!
Objective: maximize the expected total
discounted reward accumulated during a
single trial (as opposed to episode)
Memory is preserved across episodes,
e.g., I ‘d better know what actions i tried
earlier, not to try the same things

RL
Each time an episode is
unrolled, reward is observed,
policy is updated
Objective: maximize the
expected total discounted
reward accumulated during a
single episode
No memory across episodes
other than the policy’s updated
parameters

RL VS Learning RL

Each batch example is a trial! Each trial has constant number of episodes (the
experience budget).
For each trial, a separate MDP is drawn.
Policy: an RNN that takes (state,action,reward,termination flag) as input at every
time step.
TRPO as the meta-policy optimizer

Multi-armed bandits

Multi-armed bandit problems are a subset of MDPs where the agent’s
environment is stateless.
There are k arms (actions), and at every time step, the agent pulls one of the
arms, and receives a reward drawn from an unknown distribution, e.g., a
Bernoulli distribution with parameter pi.
The goal is to maximize the total reward obtained over a fixed number of time
steps.
The key challenge is balancing exploration and exploitation— “exploring”
each arm enough times to estimate its distribution (pi), but eventually
switching over to “exploitation” of the best arm.
RL^2 aims at learning to solve bandit problems (learning such exploration) as
opposed to doing well in a particular bandit setup!

Multi-armed bandits: learning to explore VS theoretically
optimal exploration algorithms

k: number of bandits
n: number of episodes

RL^2 for Visual navigation

Learning to explore

RL^2 for Visual navigation

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• Learn a policy for learning a new task fast (within a specified window

of experience)

How can I compute parameters theta, so that, after a single gradient
parameter update using a small set of K labelled examples from a
new task, I will be able to master it?

How can I compute parameters theta, so that, after a single gradient
parameter update using a small set of K labelled examples from a
new task, I will be able to master it?

E.g., the new task could be, build a great ostrich detector after
seeing few examples (e.g. 3) of ostrich images.

Few shot classification example

x Y

1

0

1

1

0

0

training

Model

test
learn an ostrich detector using
few training examples

Current solution is: train a general image
classifier using Imagenet annotations, and
fine-tune that classifier using the few image
at hand. Problems?

training

test

Few shot classification example

x Y

1

0

1

1

0

0

training

Model

test
learn an ostrich detector using
few training examples

training

test

Current solution is: train a general image
classifier using Imagenet annotations, and fine-
tune that classifier using the few image at
hand. Problems?
How much to fine-tune (# of iterations), with
what l.r., how many layers etc., to guarantee
generalization?

Few shot classification example

x Y

1

0

1

1

0

0

training

Model

test
learn an ostrich detector using
few training examples

training

test

How much to fine-tune (# of iterations), with
what l.r., how many layers etc., to guarantee
generalization?
Problem is i do not train on what i will test on:
capturing well new, unseen images of ostrich,
as opposed to classifying correctly the few
ones in my training set..

Few shot classification example

x Y

1

0

1

1

0

0

training

Model

test
learn an ostrich detector using
few training examples

training

test

Other solutions to this problem: metric
learning, matching networks Vinyals et al.
2016, learning to remember rare events Kaiser
et. al 2017

Metric learning

Contrastive loss

CNN

CNN

Images are embedded so that same label images are closely and different label
images are far apart.
You need to fine-tune the CNN to accommodate for the newly arrived ostrich
images

Metric learning

Contrastive loss

CNN

CNN

Again: how many iterations to do with the
new ostrich labels? The train and test
conditions (metric learning and few shot
classification) are not the same!

Images are embedded so that same label images are closely and different label
images are far apart.
You need to fine-tune the CNN to accommodate for the newly arrived ostrich
images

Metric learning

Contrastive loss

CNN

CNN

Again: how many iterations to do with the
new ostrich labels? The train and test
conditions (metric learning and few shot
classification) are not the same!

Images are embedded so that same label images are closely and different label
images are far apart.
You need to fine-tune the CNN to accommodate for the newly arrived ostrich
images

Q: when do i know what i trained on what i’m testing on?

Matching Networks for one shot learning

Let’s fix this!

If i also want the embedding of the query image to depend on my image set:

Matching Networks for one shot learning

Let’s fix this!

Model agnostic meta-learning

\theta \theta’ f(\thet
a’)

backpropbackprop

Model agnostic meta-learning

Few shot classification

Omniglot dataset: 20 instances from 1623 characters from 50 different alphabets
N-way classification: provide K different instances of N unseen character classes,
evaluate the model’s ability to classify new instances within those classes

2D navigation

 The policy was trained with MAML to maximize performance
after 1 policy gradient update using 20 trajectories.

https://sites.google.com/view/maml

https://sites.google.com/view/maml

Summary so far

• Casting acquiring a new skill as a learning problem itself.

• Formulations for learning the update step, learning a policy for
exploration, learning easily modifiable neural net weights

• Yet, learning to learn is about compositionality: composing old
skills to form new ones

Learning to learn: This lecture

• Learning to optimize: learn parameter update rules
• One shot imitation learning
• Learn a policy for learning a new task fast (within a specified window

of experience)
• Learning parameters so that a specific number of update steps under

a loss of a new tasks yields good weights
• One shot learning using compositional neural network architectures

Compositional detectors
Instead of training a red bottle detector, train a bottle detector, a sunglass
detector, a red detector and white detector, and then by composing those
detectors you can also detect a red bottle, all compositions of objects and their
colors

Bottle detector

Color detector
(applied inside the box)

detected red bottle

Compositional policies

Identify subgoals and issue specific skills: hierarchical RL

Learning to Compose Neural Networks for Question Answering, Jacob et al. 2016

• Given a query, obtain the dependency parsing and issue neural models whose
composition answers the query successfully

• A small initial vocabulary of neural modules
• Learning: which module to issue in which order. Learning using REINFORCE.

• Deep nets as reconfigurable programs: a set of (neural) modules chained
together to produce an output, here, the answer to the question.

• A small initial vocabulary of neural modules
• Given a query, obtain the dependency parsing and learn to compose neural

models whose composition answers the query successfully

Neural nets as functional programs

A small initial vocabulary of neural modules

A small initial vocabulary of neural modules

Output is a distribution over indices (a
set) over the domain of interest (pixels or

entries of a database)

A small initial vocabulary of neural modules

Different arguments in the brackets result in different weights for each module.

Neural module composition
Compositions are restricted by type constraints!

The input sentence is
represented as a dependency
parse.
Fragments of this dependency
parse are then associated with
appropriate modules, and these
fragments are assembled into
full layouts.

Given fixed layout, the parameters of the
modules can be updated with standard
SGD. Parameters are tied across module
instantiations

Recipe for mapping parses into neural compositions

1. Represent the input sentence as a dependency tree.
2. Collect all nouns, verbs, and prepositional phrases and associate each
of these with a layout fragment: Ordinary nouns and verbs are mapped to
a single find module. Proper nouns to a single lookup module.
Prepositional phrases are mapped to a depth-2 fragment, with a relate
module for the preposition above a find module for the enclosed head
noun.
4. Form subsets of this set of layout fragments. For each subset, construct
a layout candidate by joining all fragments with an and module, and
inserting either a measure or describe module at the top (each subset thus
results in two parse candidates.)

Layout selection module

Trained using REINFORCE.
x: and LSTM encoding of the query

Question Answering

