
Sim2Real

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

So far

The requirement of large number of samples for RL, only possible
in simulation, renders RL a model-based framework, we can’t
really rely (solely) on interaction in the real world (as of today)

Simulation

The requirement of large number of samples for RL, only possible
in simulation, renders RL a model-based framework, we can’t
really rely (solely) on interaction in the real world (as of today)

Pros of Simulation

• We can afford many more samples!

• Safety

• Avoids wear and tear of the robot

• We do not need to rely on demonstrations (often too many are
needed)

• Good at rigid multibody dynamics

Cons of Simulation

• Under-modeling: many physical events are not modeled.

• Wrong parameters. Even if our physical equations were correct, we
would need to estimate the right parameters, e.g., inertia, frictions
(system identification).

• Systematic discrepancy w.r.t. the real world regarding:

• observations

• dynamics

as a result, policies that learnt in simulation do not transfer to the real world

• Hard to simulate deformable objects (finite element methods are very
computational intensive)

Cons of Simulation

• Under-modeling: many physical events are not modeled.

• Wrong parameters. Even if our physical equations were correct, we
would need to estimate the right parameters, e.g., inertia, frictions
(system identification).

• Systematic discrepancy w.r.t. the real world regarding:

• observations

• dynamics

as a result, policies that learnt in simulation do not transfer to the real world

• Hard to simulate deformable objects (finite element methods are very
computational intensive)

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real
world

• Transfer across different observations

• synthetic data randomization

• feature fine-tuning

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real
world

• Transfer across different observations

• synthetic data randomization

• feature fine-tuning

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

• Hierarchical control for better sim2real transfer: high-level
controllers determine the trajectory, low-level controllers produce
the required torques.

• Adapt a dynamics model online during actual task execution for
the low level controllers.

Interac,ve Policies with Online Model Learning

Offline:

Train policy to output desired
next state:

At every ,mestep:

Learn robot dynamics
on the fly from past observa,ons

Query policy for

Solve for robot torques such that

x̄t+1
xt+1 = f(xt,ut)

x̄t+1

x̄t+1 = f(xt,u�)

Joint Angles, IMU, Forces

u�

[Mordatch, Mishra, Eppner, Abbeel, ICRA 2016]

Training the high level policy
• Sensory state: accelerations measured by IMUs, joint angles and their

velocities

• High level policy outputs joint angles and their velocities instead of
torques

• Learn policy in simulation using guidance from trajectory optimization:

• trajectory op,miza,ons

• regression

Decompose into:

Alterna,ng Op,miza,onTraining the high level policy

slides: Igor Mordatch

• trajectory op,miza,ons

• regression

Decompose into:

Alterna,ng Op,miza,on

min
X

�

t

C(xt) + ||��(x
t)� ut||2

“stay close to policy”

Training the high level policy

Decompose into:

Alterna,ng Op,miza,on

• trajectory op,miza,ons

• regression min
�

�

i,t

||��(x
i,t)� ui,t||2

Training the high level policy

• trajectory op,miza,ons

• regression

Decompose into:

Alterna,ng Op,miza,on

min
X

�

t

C(xt) + ||��(x
t)� ut||2

Training the high level policy

Trajectory optimization used:
contact invariant optimization, for
details: Discovery of complex
behaviors through contact invariant
optimization, Mordatch et al. 2012

Decompose into:

Alterna,ng Op,miza,on

• trajectory op,miza,ons

• regression min
�

�

i,t

||��(x
i,t)� ui,t||2

Training the high level policy

Low-level controllers
Learn local forward model:

Given desired \bar{s}^{t+1} by the high level policy, estimate control u^t:

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real
world

• Transfer across different observations

• synthetic data randomization

• feature fine-tuning

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

• Idea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.

Assumes:
• a modifiable simulator with a parametrized transition

probabilities where the vector can be changed to
produce in effect a different simulator

• a policy learning procedure (optimize) in simulation
• we can evaluate the policy in the real world (physical robot)

• Idea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.

�Psim(·|s, a;�)

Assumes:
• a modifiable simulator with a parametrized transition

probabilities where the vector can be changed to
produce in effect a different simulator

• a policy learning procedure (optimize) in simulation
• we can evaluate the policy in the real world (physical robot)

• Idea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.

�Psim(·|s, a;�)

Grounded Simulation learning

• NAO: humanoid robot with 25 degrees of freedom

• Uses an open source walk engine with 15 parameters (e.g. step
height, pendulum model height etc.)

• Simulators used:

• SimSpark http://simspark.sourceforge.net

• Gazebo 5http://gazebosim.org/

http://simspark.sourceforge.net
http://gazebosim.org/

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

Digression: evolutionary methods for policy search

• Optimization methods that searches for the optimum solution in a
search-space without using gradients

• Evolution strategy steps:
1. Generate a population of candidate solutions
2. Evaluate every individual in the population
3. Select parents from the fittest individuals
4. Reproduce offspring of the next generation (Recombination &

mutation)
5. Repeat until a termination criterion is met

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

What is an Evolution Strategy? - Example

1. Generate a population of candidate solutions

3/15/2015

y=f(x)

x

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

fitness

What is an Evolution Strategy? - Example

2. Evaluate every individual in the population

3/15/2015

y=f(x)

x

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

fitness

What is an Evolution Strategy? - Example

3. Select parents from the fittest individuals

3/15/2015

y=f(x)

x

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

What is an Evolution Strategy? - Example

4. Reproduce offspring of the next generation
(Recombination & mutation)

3/15/2015

y=f(x)

x

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

What is an Evolution Strategy? - Example

5. Repeat until a termination criterion is met

3/15/2015

y=f(x)

xEvaluate & Select

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

What is an Evolution Strategy? - Example

5. Repeat until a termination criterion is met

3/15/2015

y=f(x)

x
Evaluate & Select

Reproduce

Evolutionary Methods

CAIRO UNIVERSITY - COMPUTER
ENGINEERING - 2015

What is an Evolution Strategy? - Example

5. Repeat until a termination criterion is met

3/15/2015

y=f(x)

x

Optimum
Solution

Evaluate – Select – Reproduce
Reproduce

Terminate

Evolutionary Methods

Cross-Entropy Method

n  Views	U	as	a	black	box	

n  Ignores	all	other	informaMon	
other	than	U	collected	during	
episode		

Cross-Entropy	Method	
max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

CEM:	
		for	iter	i	=	1,	2,	…	
						for	populaMon	member	e	=	1,	2,	...	
										sample	
										execute	roll-outs	under	
										store	
							endfor	
	
		

												where					indexes	over	top		p	%	
				endfor	
										 					

✓(e) ⇠ Pµ(i)(✓)
⇡✓(e)

µ(i+1)
= argmax

µ

X

ē

logPµ(✓
(ē)

)

ē
		=	evoluMonary	algorithm	

					populaMon:		

	

Pµ(i)(✓)

(✓(e), U(e))

• Views U as a black box

• Ignores all other information
other than U collected
during episode

= evolutionary algorithm

 Population:

n  Views	U	as	a	black	box	

n  Ignores	all	other	informaMon	
other	than	U	collected	during	
episode		

Cross-Entropy	Method	
max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

CEM:	
		for	iter	i	=	1,	2,	…	
						for	populaMon	member	e	=	1,	2,	...	
										sample	
										execute	roll-outs	under	
										store	
							endfor	
	
		

												where					indexes	over	top		p	%	
				endfor	
										 					

✓(e) ⇠ Pµ(i)(✓)
⇡✓(e)

µ(i+1)
= argmax

µ

X

ē

logPµ(✓
(ē)

)

ē
		=	evoluMonary	algorithm	

					populaMon:		

	

Pµ(i)(✓)

(✓(e), U(e))

max

✓
U(✓) = max

✓
E[

HX

t=0

R(st)|⇡✓]

Pµ(i)(✓)

slides from John Schulam and Pieter Abbeel

Cross-Entropy Method

n  Can	work	embarrassingly	well	

Cross-Entropy	Method	

[NIPS	2013]	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	

n  Can	work	embarrassingly	well	

Cross-Entropy	Method	

[NIPS	2013]	

John	Schulman	&	Pieter	Abbeel	–	OpenAI	+	UC	Berkeley	

• Can work embarrassingly well

slides from John Schulam and Pieter Abbeel

Closely Related Approaches

n  Reward	Weighted	Regression	(RWR)	

n  Dayan	&	Hinton,	NC	1997;	Peters	&	Schaal,	ICML	2007	

n  Policy	Improvement	with	Path	Integrals	(PI
2
)	

n  PI2:	Theodorou,	Buchli,	Schaal	JMLR2010;	Kappen,	2007;	(PI2-CMA:	Stulp	&	Sigaud	ICML2012)	

n  Covariance	Matrix	AdaptaMon	EvoluMonary	Strategy	(CMA-ES)	

n  CMA:	Hansen	&	Ostermeier	1996;		(CMA-ES:	Hansen,	Muller,	Koumoutsakos	2003)	

	

n  PoWER	

n  Kober	&	Peters,	NIPS	2007	(also	applies	importance	sampling	for	sample	re-use)	

Closely	Related	Approaches	

µ(i+1)
= argmax

µ

X

e

exp(�U(e)) logPµ(✓
(e)

)

(µ(i+1),⌃(i+1)
) = argmax

µ,⌃

X

ē

w(U(ē)) logN (✓(ē);µ,⌃)

µ(i+1)
= argmax

µ

X

e

q(U(e), Pµ(✓
(e)

)) logPµ(✓
(e)

)

µ(i+1) = µ(i) +

X

e

(✓(e) � µ(i))U(e)

!
/

X

e

U(e)

!

(✓(e), U(e))

slides from John Schulam and Pieter Abbeel

Assumes:
• a modifiable simulator with a parametrized transition

probabilities where the vector can be changed to
produce in effect a different simulator

• a policy learning procedure (optimize) in simulation
• we can evaluate the policy in the real world (physical robot)

• Idea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.

�Psim(·|s, a;�)

Grounded Simulation Learning

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013

• Let be a measure of similarity between probabilities and . GSL
grounds by finding such that:

d(p, q) p q
Esim �?

�? = argmin
�

X

⌧2D
d(Pr(⌧ |✓), P rsim(⌧ |✓,�)) (1)

Grounded Simulation Learning

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013

• Let be a measure of similarity between probabilities and . GSL
grounds by finding such that:

d(p, q) p q
Esim �?

�? = argmin
�

X

⌧i2D

LX

t=0

d(P (sit+1|sit, ait), P�(s
i
t+1|sit, ait))

�? = argmin
�

X

⌧2D
d(Pr(⌧ |✓), P rsim(⌧ |✓,�)) (1)

Grounded Simulation Learning

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013

• Let be a measure of similarity between probabilities and . GSL
grounds by finding such that:

d(p, q) p q
Esim �?

�? = argmin
�

X

⌧2D
d(Pr(⌧ |✓), P rsim(⌧ |✓,�))

1. Execute policy on the physical robot to collect a data set of trajectories
, .

2. Use to find that satisfies Equation 1

3. Use optimize with and to learn a set of candidate policies in
simulation which are expected to perform well on the physical robot

4. Evaluate each proposed on the physical robot and return the
policy, , with minimal

5. GOTO 1

✓0
D

D �?

Jsim P�? ⇧c

✓c 2 ⇧c
✓1 J

Grounded Simulation Learning
 instead of parametrizing physical parameters of the simulator, parametrizes
actions transformations!
�

real world

simulation

Reminder: Froward and backward models

• Forward model: maps state and action to next state. With forward
models you can solve for action that leads to desired next state.

• Backward model: maps state and next state to the action that
achieves the transition. Its output is used directly for control.

st, at ! st+1

st, st+1 ! at

Grounded Simulation Learning
 instead of parametrizing physical parameters of the simulator, parametrizes
actions transformations!
�

real world

simulation

Grounded Simulation Learning
 instead of parametrizing physical parameters of the simulator, parametrizes
actions transformations!

• A deterministic forward model of the real robot’s dynamics, f predicts the
effect of executing on the physical robot.

• An inverse dynamics model of the simulated robot uses the prediction
, , to predict the action which will achieve in simulation.

• is executed in simulation. The resulting state transition will be similar to
the transition that would have occurred in the real world.

at

�

ât x̂t

ât

ŝ

real world

simulation

changed the simulator dynamics

Simulation Grounding Results
Video

Noise envelope baseline: Add noise to the simulation dynamics to encourage
policy learning to find policies robust across environments.
Policies that work under a range of possible models, can be conservative and
work worse for that particular world

https://www.youtube.com/watch?v=2GaxCJi_mEc

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real
world

• Transfer across different observations

• synthetic data randomization

• feature fine-tuning

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

Ideas:
• Consider a distribution over simulation models instead of a single one

for learning policies robust to modeling errors that work well under
many ``worlds”.

• Progressively bring the simulation model distribution closer to the real
world. Bayesian modeling of the dynamics.

• Hard model mining

Source domain distribution over MDPs

• MDPs differ in source and target domains w.r.t.

• dynamics

• rewards

• initial state distributions

• and are identical w.r.t.

• States

• Actions

Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

Policy Search under model distribution

p: simulator parameters

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

Hard model mining

Hard model mining

Hard model mining results

Adapting the source domain distribution

Sample a set of simulation parameters from a sampling distribution S.
Posterior of parameters p_i:

Fit a Gaussian model over simulator parameters based on posterior
weights of the samples

Source Distribution Adaptation

Performance on hopper policies
trained on
Gaussian
distribution of
mean mass 6
and standard
deviation 1.5trained on single source domains

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real
world

• Transfer across different observations

• synthetic data randomization

• feature fine-tuning

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

• Policies search in simulation

• Use neural network to map learned policy in source environment (simulation) to target
environment (real world)

• Transfer good policies in one simulation to many other real world environments, where
a different inverse model takes care of the transfer to a particular target environment

• Observation in source and target environment are assumed the same, which is not
always true

Deep Inverse Dynamic Model

• : Trajectory: most recent observations and
actions of target environment

• : Good enough policy in source environment

• : Inverse dynamics is a neural network that maps source policy
to target policy

Introduction

Method

Result

Deep Inverse Dynamic Model

Training of Inverse Dynamics Neural Network

Deep Inverse Dynamic Model

⌧�k:: Trajectory: {o}most recent k observations and k-1
actions of target environment.
⇡
source

: Good enough policy in source environment.
�: Inverse dynamics is a neural network that maps source
policy to target policy.

Figure:

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech ZaermbaTransfer from Simulation to Real World through Learning Deep Inverse Dynamics Model

{o} k k � 1

⇡
source

�

⌧�k:

Deep Inverse Dynamic Model

1. Compute source action according to
target trajectory

2. Observe the next state given and :

3. Feed and to inverse dynamics that produce

Introduction

Method

Result

Deep Inverse Dynamic Model

Training of Inverse Dynamics Neural Network

Deep Inverse Dynamic Model

⌧�k:: Trajectory: {o}most recent k observations and k-1
actions of target environment.
⇡
source

: Good enough policy in source environment.
�: Inverse dynamics is a neural network that maps source
policy to target policy.

Figure:

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech ZaermbaTransfer from Simulation to Real World through Learning Deep Inverse Dynamics Model

a
source

= ⇡
source

(⌧�k:)

⌧�k: a
source

ô

next

⌧�k: atarget

Architecture of Inverse Dynamic Neural Network

• Input: previous k observations, previous k-1 actions, desired
observation for next time

• Output: the action that leads to desired observation

• Hidden layer: two fully connected hidden layer with 256 unit
followed by ReLU activation function

Simulation 1 to Simulation 2 Transfer I

• The experiments are performed on Simulators that can change
conditions of it’s environment

• The source and target environment are basically the same model
except gravity or motor noise

• The following four models are used for simulation

• Figure: From left to right are Reacher, Hopper, Half-cheetah, and
Humanoid

Introduction

Method

Result

Simulation 1 to Simulation 2 Transfer I

The experiments are performed on Simulators that can change
conditions of it’s environment.
The source and target environment are basically the same
model except gravity or motor noise
The following four models are used for simulation.

Figure: From left to right are Reacher, Hopper, Half-cheetah, and
Humanoid

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech ZaermbaTransfer from Simulation to Real World through Learning Deep Inverse Dynamics Model

Simulation 1 to Simulation 2 Transfer II
Introduction

Method

Result

Simulation 1 to Simulation 2 Transfer II

Variation of Gravity

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech ZaermbaTransfer from Simulation to Real World through Learning Deep Inverse Dynamics Model

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real world

• Transfer across different observations

• feature fine-tuning

• feature unsupervised pretraining

• synthetic data randomization

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

Finetuning Deep (Visual) Features
Common practice: we download a pretrained model and adapt it to our task

Imagenet GoogleNet

Finetuning GoogleNet for diabetic retinopathy prediction

Finetuning Deep (Visual) Features
Common practice: we download a pretrained model and adapt it to our task

Finetuning GoogleNet for diabetic retinopathy prediction

Pros: Straightforward to do
Cons: not great transfer due to difference in image statistics/ dataset biases

Imagenet Policy Learning

Finetuning Deep (Visual) Features

• How many layers to finetune? For how long to fine-tune (how
many iterations)?

• Catastrophic forgetting

• -> Learning to fine-tune (later lecture)

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real world

• Transfer across different observations

• feature fine-tuning

• feature unsupervised pretraining

• synthetic data randomization

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

Pretrain Deep (Visual) Features using self-supervision
Less Common practice: use an unsupervised pretaining task to pretrain (or
finetune) visual features, e.g., using feature slowness or using inverse dynamics
models

The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.

predict the tactile profile

features to be invariant to
viewpoint changes, metric
learning

predict the push
direction

Pretrain Deep (Visual) Features using inverse models

The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al.

Pretrain Deep (Visual) Features using slowness

Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al.
The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.

feat_i feat_j

min. ||feat_i-feat_j||

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real world

• Transfer across different observations

• feature fine-tuning

• feature unsupervised pretraining

• synthetic data randomization

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

• Add new capacity as you see new domains

Progressive Nets (grow a brain)

• Freeze previously learnt parameters when new ones are added, else the initial
bad gradients will destroy them.

• Each column trains a different policy
• Columns in progressive networks are free to reuse, modify or
ignore previously learned features via the lateral connections.
• Columns of real robot have much smaller capacity that columns trained on

simulation

• reset at any state!

• Exhaustive policy rollouts: all actions are tried out for a horizon of 5
steps, to get the probability of collision in each state and action

Learning control VS learning a forward model

LRS (left-right-straight) baseline: given an image predict direction of motion. Not
fine enough around corners, also, you cannot choose your direction of motion.
Instead, here we predict probability of collision given an action, which can be
combined with a diverse set of goals, e.g., track the human.

https://www.youtube.com/watch?v=nXBWmzFrj5s

• Transfer across different dynamics

• online dynamics adaptation

• have a neural network to adapt the policy learnt in simulation to the real world

• grounding simulators: learning to bring their dynamics closer to real world dynamics using:

• Parametrized action transformations

• ensemble of simulators and adapting their distribution to match dynamics in the real world

• Transfer across different observations

• feature fine-tuning

• feature unsupervised pretraining

• synthetic data randomization

• feature progression

• Supervised paired alignment between observation in simulation and real world

• Unsupervised observation distribution matching

This lecture: Sim2real

Domain Adaptation

Use both domain confusion (distribution
matching) between source and target
domains, as well as image pairs, for
regularizing the learnt visual feature
representation

source target image pairs

Domain adaptation
task loss: object pose estimation, so that we learn features relevant to objects
presents that can be used in GPS

Domain adaptation

domain classifier:
tries to assign each image
to the domain is comes from

negative cross entropy between
the uniform distribution and the
distribution over domains

task loss: object pose estimation, so that we learn features relevant to objects
presents that can be used in GPS

Weakly supervised domain adaptation

Mine image pairs as you go

Task: match hook position while ignoring the arm

Adaptation results

Estimating or Propagating
Gradients (cont.)

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Architecture search with REINFORCE

Neural Architecture Search

• Can we try and learn good architecture automatically replacing
human intuition?

Motivation for Architecture Search

Motivation for Architecture Search

● Designing neural network architectures is hard
● Lots of human efforts go into tuning them
● There is not a lot of intuition into how to design them well
● Can we try and learn good architectures automatically?

Two layers from the famous Inception V4 computer vision model.Canziani et al, 2017 Szegedy et al, 2017

Neural Architecture Search

• Specify the structure and connectivity of a neural network by using
a configuration string

• [“Filter width: 5”, “Filter Height: 3”, “Num Filters: 24”]

• Use a RNN (“Controller”) to generate this string that specifies a
neural network architecture

• Train this architecture (“Child Network”) to see how well it performs
on a validation set

• Use reinforcement learning to update the parameters of the
Controller model based on the accuracy of the child model

Neural Architecture Search for Convolutional Networks

Neural Architecture Search for Convolutional Networks

Controller RNNSoftmax classifier

Embedding

Training with REINFORCE

Training with REINFORCE
Accuracy of architecture on
held-out dataset

Architecture predicted by the controller RNN
viewed as a sequence of actions

Parameters of Controller RNN

Training with REINFORCE

Training with REINFORCE
Accuracy of architecture on
held-out dataset

Architecture predicted by the controller RNN
viewed as a sequence of actions

Parameters of Controller RNN

Training with REINFORCE

Training with REINFORCE
Accuracy of architecture on
held-out dataset

Architecture predicted by the controller RNN
viewed as a sequence of actions

Parameters of Controller RNN

Number of models in minibatch

Distributed Training

Distributed Training

Neural Architecture Search fro CIFAR-10

Neural Architecture Search for CIFAR-10
Weight Matrices

Neural Architecture Search fro CIFAR-10
Neural Architecture Search for CIFAR-10

5% faster

Best result of evolution (Real et al, 2017): 5.4%
Best result of Q-learning (Baker et al, 2017): 6.92%

Recurrent Cell Prediction Method
Recurrent Cell Prediction Method

● Created a search space for search over RNN cells like the LSTM or GRU
● Based our search space off the LSTM cell in that we have a recurrent state and

cell

• Created a search space for search over RNN cells like the LSTM
or GRU

• Based our search space off the LSTM cell in that we have
recurrent state and cell

Recurrent Cell Prediction Method

Recurrent Cell Prediction Method

Controller RNNCell Search Space Created New Cell

Penn Treebank Results

Penn Treebank Results

LSTM Cell Neural Architecture Search (NAS) Cell

Penn Treebank Results

Penn Treebank Results

2x as fast

Neural Optimizer Search

Neural Optimizer Search

Use validation
set signal

Architecture search with Pathwise derivatives

As the training data increases, model capacity increases to keep accuracy
high.
This in turn increases cost of every example, at both train and test time.
Can we do better?
Yes, with conditional computation: specialize the model per example, not all
examples will share the same model
We need to learn: 1) how examples will be distributed to models 2) the models
themselves

Per example routing
Per-Example Routing

The gating function
Per-Example Routing

The gating function
Per-Example Routing

noise from a fixed distribution

The gating function
Per-Example Routing

noise from a fixed distribution
this behaves like variance (positive)

Outrageously Large Neural Networks: The Sparsely-gated Mixture-of-Experts Layer,
Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le & Jeff Dean
Submitted to ICLR 2017, https://openreview.net/pdf?id=B1ckMDqlg

Per-Example Routing

Language generation using REINFORCE

Actions: words samples (softmax over the vocabulary)
Reward (at each subsequence generated): confusion of a discriminator
(likelihood of being real), which is trained to tell apart generated from real
sentences

Language generation using REINFORCE

Language generation using pathwise derivatives

Language generation using pathwise derivatives

