Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Sim2Real

Katerina Fragkiadaki

The requirement of large number of samples for RL, only possible in simulation, renders RL a model-based framework, we can't really rely (solely) on interaction in the real world (as of today)

Simulation

Pros of Simulation

- We can afford many more samples!
- Safety
- Avoids wear and tear of the robot
- We do not need to rely on demonstrations (often too many are needed)
- Good at rigid multibody dynamics

Cons of Simulation

- Under-modeling: many physical events are not modeled.
- Wrong parameters. Even if our physical equations were correct, we would need to estimate the right parameters, e.g., inertia, frictions (system identification).
- Systematic discrepancy w.r.t. the real world regarding:
 - observations
 - dynamics

as a result, policies that learnt in simulation do not transfer to the real world

Hard to simulate deformable objects (finite element methods are very computational intensive)

Cons of Simulation

- Under-modeling: many physical events are not modeled.
- Wrong parameters. Even if our physical equations were correct, we would need to estimate the right parameters, e.g., inertia, frictions (system identification).
- Systematic discrepancy w.r.t. the real world regarding:
 - observations
 - dynamics

as a result, policies that learnt in simulation do not transfer to the real world

Hard to simulate deformable objects (finite element methods are very computational intensive)

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - synthetic data randomization
 - feature fine-tuning
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - synthetic data randomization
 - feature fine-tuning
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

Justin Fu, Sergey Levine, Pieter Abbeel

Algorithm 1 Model-based reinforcement learning with online adaptation

- 1: for time step t = 1 to T do
- 2: Observe state \mathbf{x}_t
- 3: Update $\hat{\mu}_t$ and Δ_t via Equations (3) and (4)
- 4: Compute $\hat{\Sigma}_t = \Delta_t \hat{\mu}_t \hat{\mu}_t^{\mathrm{T}}$
- 5: Evaluate prior to obtain Φ , μ_0 , m, and n_0 (see Section V)
- 6: Update β and N as described in Equation (5)
- 7: Compute μ and Σ via Equation (1)
- 8: Compute $f_{\mathbf{x}t}$, $f_{\mathbf{u}t}$, f_{ct} , and \mathbf{F}_t from μ and Σ via Equation (2)
- 9: Run LQR to compute \mathbf{K}_t , \mathbf{k}_t , and $Q_{\mathbf{u},\mathbf{u}t}$
- 10: Sample \mathbf{u}_t from $\mathcal{N}(\hat{\mathbf{u}}_t + \mathbf{k}_t + \mathbf{K}_t(\mathbf{x}_t \hat{\mathbf{x}}_t), Q_{\mathbf{u},\mathbf{u}t}^{-1})$
- 11: Take action \mathbf{u}_t
- 12: end for

Combining Model-Based Policy Search with Online Model Learning for Control of Physical Humanoids

Igor Mordatch, Nikhil Mishra, Clemens Eppner, Pieter Abbeel Department of Computer Science and Engineering, University of California, Berkeley, CA, USA.

- Hierarchical control for better sim2real transfer: high-level controllers determine the trajectory, low-level controllers produce the required torques.
- Adapt a dynamics model online during actual task execution for the low level controllers.

Combining Model-Based Policy Search with Online Model Learning for Control of Physical Humanoids

Igor Mordatch, Nikhil Mishra, Clemens Eppner, Pieter Abbeel Department of Computer Science and Engineering, University of California, Berkeley, CA, USA.

Offline:

Train policy to output *desired* next state:

At every timestep:

Learn robot dynamics on the fly from past observations

$$\mathbf{x}^{t+1} = f(\mathbf{x}^t, \mathbf{u}^t)$$
Query policy for $\bar{\mathbf{x}}^{t+1}$
Solve for robot torques \mathbf{u}^* such that
$$\bar{\mathbf{x}}^{t+1} = f(\mathbf{x}^t, \mathbf{u}^*)$$

- Sensory state: accelerations measured by IMUs, joint angles and their velocities
- High level policy outputs joint angles and their velocities instead of torques
- Learn policy in simulation using guidance from trajectory optimization:

$$\begin{array}{ll} \underset{\theta \in \mathbf{X}^{1} \dots \mathbf{X}^{N}}{\text{minimize}} & \sum_{i} C_{i}(\mathbf{X}^{i}) \\ \text{subject to} & \forall i, t : \mathbf{a}^{t}(\mathbf{X}^{i}) = \pi_{\theta}(\mathbf{s}^{t}(\mathbf{X}^{i})) \end{array}$$

Decompose into:

- trajectory optimizations
- regression

slides: Igor Mordatch

Decompose into:

"stay close to policy"

• trajectory optimizations

$$\min_{\mathbf{X}} \sum_{t} C(\mathbf{x}^{t}) + ||\boldsymbol{\pi}_{\theta}(\mathbf{x}^{t}) - \mathbf{u}^{t}||^{2}$$

Decompose into:

trajectory optimizations

$$\min_{\theta} \sum_{i,t} ||\boldsymbol{\pi}_{\theta}(\mathbf{x}^{i,t}) - \mathbf{u}^{i,t}||^2$$

Trajectory optimization used: contact invariant optimization, for details: Discovery of complex behaviors through contact invariant optimization, Mordatch et al. 2012

Decompose into:

trajectory optimizations

$$\min_{\mathbf{X}} \sum_{t} C(\mathbf{x}^{t}) + ||\boldsymbol{\pi}_{\theta}(\mathbf{x}^{t}) - \mathbf{u}^{t}||^{2}$$

Decompose into:

trajectory optimizations

$$\min_{\theta} \sum_{i,t} ||\boldsymbol{\pi}_{\theta}(\mathbf{x}^{i,t}) - \mathbf{u}^{i,t}||^2$$

Low-level controllers

Learn local forward model:

$$\begin{split} \mathbf{s}^{t+1} &= \mathbf{g}(\mathbf{s}^t, \mathbf{u}^t) \\ \mathbf{g}(\mathbf{s}^t, \mathbf{u}^t) &= \mathbf{J}_{\mathbf{s}} \mathbf{s}^t + \mathbf{J}_{\mathbf{u}} \mathbf{u}^t \end{split}$$

Given desired \bar{s}^{t+1} by the high level policy, estimate control u^t:

$$\mathbf{u}^{t}(\bar{\mathbf{s}}^{t+1}) = \underset{\mathbf{u}}{\text{minimize}} \ \frac{1}{2} \left\| \mathbf{g}(\mathbf{s}^{t}, \mathbf{u}) - \bar{\mathbf{s}}^{t+1} \right\|^{2}$$

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - synthetic data randomization
 - feature fine-tuning
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Josiah P. Hanna, Peter Stone

Dept. of Computer Science The University of Texas at Austin Austin, TX 78712 USA {jphanna,pstone}@cs.utexas.edu

 Idea: bring simulation closer to real world by learning parametrized actions whose execution (in simulation) brings simulation state close to real world state.

Josiah P. Hanna, Peter Stone

Dept. of Computer Science The University of Texas at Austin Austin, TX 78712 USA {jphanna,pstone}@cs.utexas.edu

 Idea: bring simulation closer to real world by learning parametrized actions whose execution (in simulation) brings simulation state close to real world state.

Assumes:

- a modifiable simulator with a parametrized transition probabilities $P_{sim}(\cdot|s,a;\phi)$ where the vector ϕ can be changed to produce in effect a different simulator
- a policy learning procedure (optimize) in simulation
- we can evaluate the policy in the real world (physical robot)

Josiah P. Hanna, Peter Stone

Dept. of Computer Science The University of Texas at Austin Austin, TX 78712 USA {jphanna,pstone}@cs.utexas.edu

 Idea: bring simulation closer to real world by learning parametrized actions whose execution (in simulation) brings simulation state close to real world state.

Assumes:

- a modifiable simulator with a parametrized transition probabilities $P_{sim}(\cdot|s,a;\phi)$ where the vector ϕ can be changed to produce in effect a different simulator
- a policy learning procedure (optimize) in simulation
- we can evaluate the policy in the real world (physical robot)

Grounded Simulation learning

- NAO: humanoid robot with 25 degrees of freedom
- Uses an open source walk engine with 15 parameters (e.g. step height, pendulum model height etc.)
- Simulators used:
 - SimSpark http://simspark.sourceforge.net
 - Gazebo http://gazebosim.org/

(a) A Softbank NAO Robot

(b) A simulated NAO in Gazebo

(c) A simulated NAO in SimSpark

Digression: evolutionary methods for policy search

- Optimization methods that searches for the optimum solution in a search-space without using gradients
- Evolution strategy steps:
 - 1. Generate a population of candidate solutions
 - 2. Evaluate every individual in the population
 - 3. Select parents from the fittest individuals
 - **4. Reproduce** offspring of the next generation (Recombination & mutation)
 - 5. Repeat until a termination criterion is met

1. Generate a population of candidate solutions

2. Evaluate every individual in the population

3. Select parents from the fittest individuals

y=t(x)

4. **Reproduce** offspring of the next generation (Recombination & mutation)

5. Repeat until a *termination criterion* is met

5. Repeat until a termination criterion is met

Reproduce Evaluate & Select

5. Repeat until a termination criterion is met

Cross-Entropy Method

$$\max_{\theta} U(\theta) = \max_{\theta} E\left[\sum_{t=0}^{H} R(s_t) | \pi_{\theta}\right]$$

- Views U as a black box
- Ignores all other information other than U collected during episode

= evolutionary algorithm

Population: $P_{\mu^{(i)}}(\theta)$

<u>CEM:</u>

for iter i = 1, 2, ... for population member e = 1, 2, ... sample $\theta^{(e)} \sim P_{\mu^{(i)}}(\theta)$ execute roll-outs under $\pi_{\theta^{(e)}}$ store $(\theta^{(e)}, U(e))$ endfor $\mu^{(i+1)} = \arg \max_{\mu} \sum_{\bar{e}} \log P_{\mu}(\theta^{(\bar{e})})$ where \bar{e} indexes over top p% endfor

Cross-Entropy Method

Can work embarrassingly well

Method	Mean Score	Reference
Nonreinforcement learning		
Hand-coded	631,167	Dellacherie (Fahey, 2003)
Genetic algorithm	586,103	(Böhm et al., 2004)
Reinforcement learning		
Relational reinforcement	≈ 50	Ramon and Driessens (2004)
learning+kernel-based regression		
Policy iteration	3183	Bertsekas and Tsitsiklis (1996)
Least squares policy iteration	<3000	Lagoudakis, Parr, and Littman (2002)
Linear programming + Bootstrap	4274	Farias and van Roy (2006)
Natural policy gradient	≈6800	Kakade (2001)
CE+RL	21,252	
CE+RL, constant noise	72,705	
CE+RL, decreasing noise	348,895	

István Szita and András Lörincz. "Learning Tetris using the noisy cross-entropy method". In: *Neural computation* 18.12 (2006), pp. 2936–2941

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris

Victor Gabillon INRIA Lille - Nord Europe, Team SequeL, FRANCE victor.gabillon@inria.fr Mohammad Ghavamzadeh* INRIA Lille - Team SequeL & Adobe Research mohammad.ghavamzadeh@inria.fr Bruno Scherrer INRIA Nancy - Grand Est, Team Maia, FRANCE bruno.scherrer@inria.fr

[NIPS 2013]

John Schulman & Pieter Abbeel – OpenAI + UC Berkeley

Closely Related Approaches

 $\label{eq:cem} \begin{array}{l} \underline{\mathsf{CEM:}} \\ \text{for iter i = 1, 2, ...} \\ \text{for population member e = 1, 2, ...} \\ \text{sample } \theta^{(e)} \sim P_{\mu^{(i)}}(\theta) \\ \text{execute roll-outs under } \pi_{\theta^{(e)}} \\ \text{store } (\theta^{(e)}, U(e)) \\ \text{endfor} \\ \mu^{(i+1)} = \arg\max_{\mu} \sum_{\bar{e}} \log P_{\mu}(\theta^{(\bar{e})}) \\ \text{where } \bar{e} \text{ indexes over top p \%} \\ \text{endfor} \end{array}$

- Reward Weighted Regression (RWR)
 - Dayan & Hinton, NC 1997; Peters & Schaal, ICML 2007

$$\mu^{(i+1)} = \arg \max_{\mu} \sum_{e} q(U(e), P_{\mu}(\theta^{(e)})) \log P_{\mu}(\theta^{(e)})$$

- Policy Improvement with Path Integrals (PI²)
 - PI2: Theodorou, Buchli, Schaal JMLR2010; Kappen, 2007; (PI2-CMA: Stulp & Sigaud ICML2012)

$$\mu^{(i+1)} = \arg \max_{\mu} \sum_{e} \exp(\lambda U(e)) \log P_{\mu}(\theta^{(e)})$$

- Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
 - CMA: Hansen & Ostermeier 1996; (CMA-ES: Hansen, Muller, Koumoutsakos 2003)

$$\left((\mu^{(i+1)}, \Sigma^{(i+1)}) = \arg\max_{\mu, \Sigma} \sum_{\bar{e}} w(U(\bar{e})) \log \mathcal{N}(\theta^{(\bar{e})}; \mu, \Sigma)\right)$$

- PoWER
 - Kober & Peters, NIPS 2007 (also applies importance sampling for sample re-use)

$$\mu^{(i+1)} = \mu^{(i)} + \left(\sum_{e} (\theta^{(e)} - \mu^{(i)}) U(e)\right) / \left(\sum_{e} U(e)\right)$$

Josiah P. Hanna, Peter Stone

Dept. of Computer Science The University of Texas at Austin Austin, TX 78712 USA {jphanna,pstone}@cs.utexas.edu

 Idea: bring simulation closer to real world by learning parametrized actions whose execution (in simulation) brings simulation state close to real world state.

Assumes:

- a modifiable simulator with a parametrized transition probabilities $P_{sim}(\cdot|s,a;\phi)$ where the vector ϕ can be changed to produce in effect a different simulator
- a policy learning procedure (optimize) in simulation
- we can evaluate the policy in the real world (physical robot)
• Let d(p,q) be a measure of similarity between probabilities p and q. GSL grounds E_{sim} by finding ϕ^* such that:

$$\phi^{\star} = \arg\min_{\phi} \sum_{\tau \in \mathcal{D}} d(Pr(\tau|\theta), Pr_{\rm sim}(\tau|\theta, \phi)) \quad (1)$$

• Let d(p,q) be a measure of similarity between probabilities p and q. GSL grounds E_{sim} by finding ϕ^* such that:

$$\phi^{\star} = \arg\min_{\phi} \sum_{\tau \in \mathcal{D}} d(Pr(\tau|\theta), Pr_{sim}(\tau|\theta, \phi)) \quad (1)$$

$$\phi^{\star} = \arg\min_{\phi} \sum_{\tau_i \in \mathcal{D}} \sum_{t=0}^{L} d(P(s_{t+1}^i|s_t^i, a_t^i), P_{\phi}(s_{t+1}^i|s_t^i, a_t^i))$$

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013

• Let d(p,q) be a measure of similarity between probabilities p and q. GSL grounds E_{sim} by finding ϕ^* such that:

$$\phi^{\star} = \arg\min_{\phi} \sum_{\tau \in \mathcal{D}} d(Pr(\tau|\theta), Pr_{sim}(\tau|\theta, \phi))$$

- 1. Execute policy θ_0 on the physical robot to collect a data set of trajectories , \mathcal{D} .
- 2. Use \mathcal{D} to find ϕ^* that satisfies Equation 1
- 3. Use optimize with J_{sim} and P_{ϕ^*} to learn a set of candidate policies \prod_c in simulation which are expected to perform well on the physical robot
- 4. Evaluate each proposed $\theta_c \in \Pi_c$ on the physical robot and return the policy, θ_1 , with minimal J

5. GOTO 1

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013

 ϕ instead of parametrizing physical parameters of the simulator, parametrizes actions transformations!

Reminder: Froward and backward models

• Forward model: maps state and action to next state. With forward models you can solve for action that leads to desired next state.

$$s_t, a_t \to s_{t+1}$$

• Backward model: maps state and next state to the action that achieves the transition. Its output is used directly for control.

$$s_t, s_{t+1} \to a_t$$

 ϕ instead of parametrizing physical parameters of the simulator, parametrizes actions transformations!

 ϕ instead of parametrizing physical parameters of the simulator, parametrizes actions transformations!

- A deterministic forward model of the real robot's dynamics, f predicts the effect of executing a_t on the physical robot.
- An inverse dynamics model of the simulated robot uses the prediction , \hat{s} , to predict the action \hat{a}_t which will achieve \hat{x}_t in simulation.
- \hat{a}_t is executed in simulation. The resulting state transition will be similar to the transition that would have occurred in the real world.

Algorithm 1 Grounded Action Transformation (GAT) Pseudo code. Input: An initial policy, θ , the environment, E, a simulator, E_{sim} , smoothing parameter α , and a policy improvement method, optimize. The function rolloutN(θ , N) executes N trajectories with θ and returns the observed state transition data. The functions trainForwardModel and trainInverseModel estimate models of the forward and inverse dynamics respectively.

Simulation Grounding Results

Method	% Improve	Failures	Best Gen.
No Ground	11.094	7	1.33
Noise-Envelope	18.93	5	6.6
GAT	22.48	1	2.67

Method	Velocity (cm/s)	% Improve
$oldsymbol{ heta}_0$	19.52	0.0
GAT SimSpark $\boldsymbol{\theta}_1$	26.27	34.58
GAT SimSpark θ_2	27.97	43.27
GAT Gazebo $\boldsymbol{\theta}_1$	26.89	37.76

Noise envelope baseline: Add noise to the simulation dynamics to encourage policy learning to find policies robust across environments.

Policies that work under a range of possible models, can be conservative and work worse for that particular world

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - synthetic data randomization
 - feature fine-tuning
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

EPOPT: LEARNING ROBUST NEURAL NETWORK POLICIES USING MODEL ENSEMBLES

Aravind Rajeswaran¹, Sarvjeet Ghotra², Balaraman Ravindran³, Sergey Levine⁴ aravraj@cs.washington.edu, sarvjeet.13it236@nitk.edu.in, ravi@cse.iitm.ac.in, svlevine@eecs.berkeley.edu

- ¹ University of Washington Seattle
- ² NITK Surathkal
- ³ Indian Institute of Technology Madras
- ⁴ University of California Berkeley

Ideas:

- Consider a distribution over simulation models instead of a single one for learning policies robust to modeling errors that work well under many ``worlds".
- Progressively bring the simulation model distribution closer to the real world. Bayesian modeling of the dynamics.
- Hard model mining

Source domain distribution over MDPs

- MDPs differ in source and target domains w.r.t.
 - dynamics
 - rewards
 - initial state distributions
- and are identical w.r.t.
 - States
 - Actions

Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source domain distribution:

$$\mathbb{E}_{p\sim\mathcal{P}}\left[\mathbb{E}_{\hat{\tau}}\left[\sum_{t=0}^{T-1}\gamma^{t}r_{t}(s_{t},a_{t}) \middle| p\right]\right]$$

p: simulator parameters

Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source domain distribution:

$$\mathbb{E}_{p \sim \mathcal{P}} \left[\mathbb{E}_{\hat{\tau}} \left[\sum_{t=0}^{T-1} \gamma^t r_t(s_t, a_t) \middle| p \right] \right]$$

p: simulator parameters

Hard model mining

Learn a policy that performs best in expectation over the worst \epsilonpercentile of MDPs in the source domain distribution

$$\max_{\theta, y} \quad \int_{\mathcal{F}(\theta)} \eta_{\mathcal{M}}(\theta, p) \mathcal{P}(p) dp \qquad s.t. \quad \mathbb{P}\left(\eta_{\mathcal{M}}(\theta, P) \le y\right) = \epsilon$$

Algorithm 1: EPOpt– ϵ for Robust Policy Search

1 Input: $\psi, \theta_0, niter, N, \epsilon$ **2** for *iteration* i = 0, 1, 2, ... niter do for k = 1, 2, ... N do 3 sample model parameters $p_k \sim \mathcal{P}_{\psi}$ 4 sample a trajectory $\tau_k = \{s_t, a_t, r_t, s_{t+1}\}_{t=0}^{T-1}$ from $\mathcal{M}(p_k)$ using policy $\pi(\theta_i)$ 5 end 6 compute $Q_{\epsilon} = \epsilon$ percentile of $\{R(\tau_k)\}_{k=1}^N$ 7 select sub-set $\mathbb{T} = \{\tau_k : R(\tau_k) \leq Q_\epsilon\}$ 8 Update policy: $\theta_{i+1} = \text{BatchPolOpt}(\theta_i, \mathbb{T})$ 9 10 end

Hard model mining results

Sample a set of simulation parameters from a sampling distribution S. Posterior of parameters p_i:

$$\mathbb{P}(p_i|\tau_k) \propto \prod_t \mathbb{P}(S_{t+1} = s_{t+1}^{(k)}|s_t^{(k)}, a_t^{(k)}, p_i) \times \frac{\mathbb{P}_P(p_i)}{\mathbb{P}_S(p_i)}$$

Fit a Gaussian model over simulator parameters based on posterior weights of the samples

Source Distribution Adaptation

Performance on hopper policies

trained on Gaussian distribution of mean mass 6 and standard deviation 1.5

trained on single source domains

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - synthetic data randomization
 - feature fine-tuning
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Transfer from Simulation to Real World through Learning Deep Inverse Dynamics Model

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba OpenAI, San Francisco, CA, USA

- Policies search in simulation
- Use neural network to map learned policy in source environment (simulation) to target environment (real world)
- Transfer good policies in one simulation to many other real world environments, where a different inverse model takes care of the transfer to a particular target environment
- Observation in source and target environment are assumed the same, which is not always true

Deep Inverse Dynamic Model

- $\tau_{-k:}$: Trajectory: $\{o\}$ most recent k observations and k-1 actions of target environment
- π_{source} : Good enough policy in source environment
- ϕ : Inverse dynamics is a neural network that maps source policy to target policy

Deep Inverse Dynamic Model

- 1. Compute source action $a_{source} = \pi_{source}(\tau_{-k:})$ according to target trajectory
- 2. Observe the next state given τ_{-k} : and a_{source} :
- 3. Feed \hat{o}_{next} and τ_{-k} to inverse dynamics that produce a_{target}

Architecture of Inverse Dynamic Neural Network

- Input: previous k observations, previous k-1 actions, desired observation for next time
- Output: the action that leads to desired observation
- Hidden layer: two fully connected hidden layer with 256 unit followed by ReLU activation function

Simulation 1 to Simulation 2 Transfer I

- The experiments are performed on Simulators that can change conditions of it's environment
- The source and target environment are basically the same model except gravity or motor noise
- The following four models are used for simulation

• Figure: From left to right are Reacher, Hopper, Half-cheetah, and Humanoid

Simulation 1 to Simulation 2 Transfer II

Variation of Gravity

- Adaptation with history
 Adaptation without history
 Expert policy
- Output Error Control
- Gaussian Dynamics Adaptation

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - feature fine-tuning
 - · feature unsupervised pretraining
 - synthetic data randomization
 - feature progression
 - · Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Finetuning Deep (Visual) Features

Common practice: we download a pretrained model and adapt it to our task

Finetuning GoogleNet for diabetic retinopathy prediction

GoogleNet

Finetuning Deep (Visual) Features

Common practice: we download a pretrained model and adapt it to our task

Finetuning GoogleNet for diabetic retinopathy prediction

Pros: Straightforward to do

Cons: not great transfer due to difference in image statistics/ dataset biases

Finetuning Deep (Visual) Features

- How many layers to finetune? For how long to fine-tune (how many iterations)?
- Catastrophic forgetting
- -> Learning to fine-tune (later lecture)

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - feature fine-tuning
 - · feature unsupervised pretraining
 - synthetic data randomization
 - feature progression
 - · Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Pretrain Deep (Visual) Features using self-supervision

Less Common practice: use an unsupervised pretaining task to pretrain (or finetune) visual features, e.g., using feature slowness or using inverse dynamics models

predict the tactile profile

features to be invariant to viewpoint changes, metric learning

predict the push direction

Pretrain Deep (Visual) Features using inverse models

Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al. The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.

Pretrain Deep (Visual) Features using slowness

min. ||feat_i-feat_j||

feat_i feat_j

The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al. Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al.

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - feature fine-tuning
 - · feature unsupervised pretraining
 - synthetic data randomization
 - feature progression
 - Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Sim-to-Real Robot Learning from Pixels with Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

> Google DeepMind London, UK

• Add new capacity as you see new domains
Progressive Nets (grow a brain)

$$h_i^{(k)} = f\left(W_i^{(k)}h_{i-1}^{(k)} + \sum_{j < k} U_i^{(k:j)}h_{i-1}^{(j)}\right)$$

 $f(x) = \max(0, x)$

- Freeze previously learnt parameters when new ones are added, else the initia bad gradients will destroy them.
- Each column trains a different policy
- Columns in progressive networks are free to reuse, modify or ignore previously learned features via the lateral connections.
- Columns of real robot have much smaller capacity that columns trained on simulation

(CAD)²RL: Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi¹ and Sergey Levine²

- reset at any state!
- Exhaustive policy rollouts: all actions are tried out for a horizon of 5 steps, to get the probability of collision in each state and action

Learning control VS learning a forward model

LRS (left-right-straight) baseline: given an image predict direction of motion. Not fine enough around corners, also, you cannot choose your direction of motion. Instead, here we predict probability of collision given an action, which can be combined with a diverse set of goals, e.g., track the human.

Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi

Sergey Levine

University of Washington

University of California, Berkeley

This lecture: Sim2real

- Transfer across different dynamics
 - online dynamics adaptation
 - have a neural network to adapt the policy learnt in simulation to the real world
 - grounding simulators: learning to bring their dynamics closer to real world dynamics using:
 - Parametrized action transformations
 - ensemble of simulators and adapting their distribution to match dynamics in the real world
- Transfer across different observations
 - feature fine-tuning
 - · feature unsupervised pretraining
 - synthetic data randomization
 - feature progression
 - · Supervised paired alignment between observation in simulation and real world
 - Unsupervised observation distribution matching

Domain Adaptation

Adapting Deep Visuomotor Representations with Weak Pairwise Constraints

Eric Tzeng^{*1}, Coline Devin^{*1}, Judy Hoffman¹, Chelsea Finn¹, Pieter Abbeel¹, Sergey Levine¹, Kate Saenko², Trevor Darrell¹

> ¹ University of California, Berkeley ² Boston University

Use both domain confusion (distribution matching) between source and target domains, as well as image pairs, for regularizing the learnt visual feature representation

source target image pairs

Domain adaptation

task loss: object pose estimation, so that we learn features relevant to objects presents that can be used in GPS

Domain adaptation

task loss: object pose estimation, so that we learn features relevant to objects presents that can be used in GPS

to the domain is comes from

Weakly supervised domain adaptation

Mine image pairs as you go

Algorithm 1 Learning domain-invariant image features

- 1: Collect x_S source domain images with labeled object pose
- 2: Collect x_T target domain images
- 3: Minimize $\mathcal{L}_{\phi}(x_S, \phi_S; \theta_{\phi}, \theta_{repr}) + \lambda \mathcal{L}_{conf}(x_S, x_T, \theta_D; \theta_{repr})$ with respect to $\theta_{\phi}, \theta_{repr}$
- 4: for $x_T^{(j)}$ in x_T do
- 5: $i^* = \arg\min_i ||f_{\operatorname{conv1}}(x_S^{(i)}; \theta_{\operatorname{repr}}) f_{\operatorname{conv1}}(x_T^{(j)}; \theta_{\operatorname{repr}})||_2$
- 6: Add (i^*, j) to P
- 7: end for

8: Minimize $\mathcal{L}(x_S, \phi_S, x_T, \phi_T, P, \theta_D; \theta_\phi, \theta_{repr})$ with respect to $\theta_\phi, \theta_{repr}$

Task: match hook position while ignoring the arm

Table 3. Performance of visuomotor tasks trained using domain alignment with weakly supervised pairwise constraints. We report the percentage of successful attempts at placing a loop of rope on a hook after training with 12 iterations of GPS. Each experiment was repeated 3 times.

Method	# Sim	# Real (unlabeled	d) Success rate
Synthetic only	4000	0	$38.1\%\pm8\%$
Autoencoder (100)	0	100	$28.6\% \pm 25\%$
Autoencoder (500)	0	500	$33.2\% \pm 15\%$
Domain alignment with randomly	4000	100	$33.3\% \pm 16\%$
assigned pairs			
Domain alignment with weakly	4000	100	$\mathbf{76.2\%} \pm \mathbf{16\%}$
supervised pairwise constraints			
Oracle	0	500 (labeled)	$71.4\% \pm 14\%$

Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Estimating or Propagating Gradients (cont.)

Katerina Fragkiadaki

Architecture search with REINFORCE

NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph; Quoc V. Le Google Brain {barretzoph,qvl}@google.com

Motivation for Architecture Search

• Can we try and learn good architecture automatically replacing human intuition?

Two layers from the famous Inception V4 computer vision model. Szegedy et al, 2017

Neural Architecture Search

- Specify the structure and connectivity of a neural network by using a configuration string
 - ["Filter width: 5", "Filter Height: 3", "Num Filters: 24"]
- Use a RNN ("Controller") to generate this string that specifies a neural network architecture
- Train this architecture ("Child Network") to see how well it performs on a validation set
- Use reinforcement learning to update the parameters of the Controller model based on the accuracy of the child model

Neural Architecture Search for Convolutional Networks

Training with REINFORCE

Training with REINFORCE

$$\nabla_{\theta_c} J(\theta_c) = \sum_{t=1}^T E_{P(a_{1:T};\theta_c)} \Big[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \Big]$$

Training with REINFORCE

Accuracy of architecture on Parameters of Controller RNN held-out dataset $J(\theta_c) = E_{P(a_{1:T};\theta_c)}[R]$ Architecture predicted by the controller RNN viewed as a sequence of actions $\nabla_{\theta_c} J(\theta_c) = \sum_{t=1}^{I} E_{P(a_{1:T};\theta_c)} \Big[\nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R \Big]$

Number of models in minibatch $\longrightarrow \frac{1}{m} \sum_{k=1}^{m} \sum_{t=1}^{T} \nabla_{\theta_c} \log P(a_t | a_{(t-1):1}; \theta_c) R_k$

Distributed Training

Neural Architecture Search fro CIFAR-10

Neural Architecture Search fro CIFAR-10

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	5	-	8.81
All-CNN (Springenberg et al., 2014)	-	-	7.25
Deeply Supervised Net (Lee et al., 2015)	÷	-	7.97
Highway Network (Srivastava et al., 2015)	5	-	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

5% faster

Best result of evolution (Real et al, 2017): 5.4% Best result of Q-learning (Baker et al, 2017): 6.92%

Google

Recurrent Cell Prediction Method

- Created a search space for search over RNN cells like the LSTM or GRU
- Based our search space off the LSTM cell in that we have recurrent state and cell

Recurrent Cell Prediction Method

Penn Treebank Results

Penn Treebank Results

Model	Parameters	Test Perplexity
Mikolov & Zweig (2012) - KN-5	2M [‡]	141.2
Mikolov & Zweig (2012) - KN5 + cache	2M [‡]	125.7
Mikolov & Zweig (2012) - RNN	6M [‡]	124.7
Mikolov & Zweig (2012) - RNN-LDA	7M [‡]	113.7
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache	9M [‡]	92.0
Pascanu et al. (2013) - Deep RNN	6M	107.5
Cheng et al. (2014) - Sum-Prod Net	5M [‡]	100.0
Zaremba et al. (2014) - LSTM (medium)	20M	82.7
Zaremba et al. (2014) - LSTM (large)	66M	78.4
Gal (2015) - Variational LSTM (medium, untied)	20M	79.7
Gal (2015) - Variational LSTM (medium, untied, MC)	20M	78.6
Gal (2015) - Variational LSTM (large, untied)	66M	75.2
Gal (2015) - Variational LSTM (large, untied, MC)	66M	73.4
Kim et al. (2015) - CharCNN	19M	78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings	51M	73.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium)	20M	80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium)	21M	70.9
Inan et al. (2016) - VD-LSTM + REAL (large)	51M	68.5
Zilly et al. (2016) - Variational RHN, shared embeddings	24M	66.0 —
Neural Architecture Search with base 8	32M	67.9
Neural Architecture Search with base 8 and shared embeddings	25M	64.0 —
Neural Architecture Search with base 8 and shared embeddings	54M	62.4

Neural Optimizer Search

Architecture search with Pathwise derivatives

OUTRAGEOUSLY LARGE NEURAL NETWORKS: THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer¹, Azalia Mirhoseini^{*†1}, Krzysztof Maziarz^{*2}, Andy Davis¹, Quoc Le¹, Geoffrey Hinton¹ and Jeff Dean¹

¹Google Brain, {noam,azalia,andydavis,qvl,geoffhinton,jeff}@google.com
²Jagiellonian University, Cracow, krzysztof.maziarz@student.uj.edu.pl

As the training data increases, model capacity increases to keep accuracy high.

This in turn increases cost of every example, at both train and test time.

Can we do better?

Yes, with conditional computation: specialize the model per example, not all examples will share the same model

We need to learn: 1) how examples will be distributed to models 2) the models themselves

Per example routing

The gating function

$$G_{\sigma}(x) = Softmax(x \cdot W_g)$$

$$G(x) = Softmax(KeepTopK(H(x), k))$$
(3)

$$H(x)_i = (x \cdot W_g)_i + StandardNormal() \cdot Softplus((x \cdot W_{noise})_i)$$
(4)

$$KeepTopK(v,k)_{i} = \begin{cases} v_{i} & \text{if } v_{i} \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$
(5)

The gating function

$$G_{\sigma}(x) = Softmax(x \cdot W_g)$$

G(x) = Softmax(KeepTopK(H(x), k))

 $H(x)_i = (x \cdot W_g)_i + \frac{StandardNormal()}{Softplus}((x \cdot W_{noise})_i)$

 $KeepTopK(v,k)_i = \begin{cases} v_i & \text{if } v_i \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$

noise from a fixed distribution

The gating function

$$G_{\sigma}(x) = Softmax(x \cdot W_g)$$

G(x) = Softmax(KeepTopK(H(x), k))

$$H(x)_{i} = (x \cdot W_{g})_{i} + StandardNormal() \cdot Softplus((x \cdot W_{noise})_{i})$$
$$KeepTopK(v,k)_{i} = \begin{cases} v_{i} & \text{if } v_{i} \text{ is in the top } k \text{ elements of } v. \\ -\infty & \text{otherwise.} \end{cases}$$

noise from a fixed distribution this behaves like variance (positive)

Table 7: Perplexity and BLEU comparison of our method against previous state-of-art methods on the Google Production $En \rightarrow Fr$ dataset.

Model	Eval Perplexity	Eval BLEU	Test Perplexity	Test BLEU	Computation per Word	Total #Parameters	Training Time
MoE with 2048 Experts	2.60	37.27	2.69	36.57	100.8M	8.690B	1 day/64 k40s
GNMT (Wu et al., 2016)	2.78	35.80	2.87	35.56	214.2M	246.9M	6 days/96 k80s

Language generation using REINFORCE

Adversarial Learning for Neural Dialogue Generation

Jiwei Li¹, Will Monroe¹, Tianlin Shi¹, Sébastien Jean², Alan Ritter³ and Dan Jurafsky¹

¹Stanford University, CA, USA ²New York University, NY, USA ³Ohio State University, OH, USA jiweil, wmonroe4, tianlins, jurafsky@stanford.edu sebastien@cs.nyu.edu ritter.1492@osu.edu

Actions: words samples (softmax over the vocabulary)

Reward (at each subsequence generated): confusion of a discriminator (likelihood of being real), which is trained to tell apart generated from real sentences

$$J(\theta) = \mathbb{E}_{y \sim p(y|x)}(Q_+(\{x, y\})|\theta)$$
$$\nabla J(\theta) \approx \sum_t (Q_+(x, Y_t) - b(x, Y_t))$$
$$\nabla \log p(y_t|x, Y_{1:t-1})$$

Language generation using REINFORCE

For number of training iterations do

- . For i=1,D-steps do
- . Sample (X,Y) from real data
- . Sample $\hat{Y} \sim G(\cdot|X)$
 - Update D using (X, Y) as positive examples and
- (X, \hat{Y}) as negative examples.
- . End
- . For i=1,G-steps do
- . Sample (X,Y) from real data
- . Sample $\hat{Y} \sim G(\cdot|X)$
- Compute Reward r for (X, \hat{Y}) using D.
- . Update G on (X, \hat{Y}) using reward r
- . Teacher-Forcing: Update G on (X, Y)
- . End

End

GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution

Matt J. Kusner Alan Turing Institute University of Warwick José Miguel Hernández-Lobato University of Cambridge

$$[\text{softmax}(\mathbf{h})]_i = \frac{\exp(\mathbf{h}_i)}{\sum_{j=1}^{K} \exp(\mathbf{h}_j)}$$

$$\mathbf{y} = \text{one_hot}(\arg\max_i(h_i + g_i))$$

 $\mathbf{y} = \operatorname{softmax}(1/\tau(\mathbf{h} + \mathbf{g})))$
Algorithm 1: Generative Adversarial Network [14]

- 1: **data:** $\{\mathbf{x}_1, ..., \mathbf{x}_n\} \sim p(\mathbf{x}),$
- 2: Generative LSTM network G_{Θ}
- 3: Discriminative LSTM network D_{Φ}
- 4: while loop until convergence do
- Sample mini-batch of inputs $B = {\mathbf{x}_{B_1}, \dots, \mathbf{x}_{B_m}}$ 5:
- 6:
- Sample noise $N = \{\mathbf{z}_{N_1}, \dots, \mathbf{z}_{N_m}\}$ Update discriminator $\Phi = \operatorname{argmin}_{\Phi} \frac{1}{m} \sum_{\mathbf{x} \in B} \log D_{\Phi}(\mathbf{x}) \frac{1}{m} \sum_{\mathbf{z} \in N} \log(1 D_{\Phi}(G_{\Theta}(\mathbf{z})))$ 7:
- Update generator $\Theta = \operatorname{argmin}_{\Theta} \frac{1}{m} \sum_{\mathbf{z} \in N} \log \frac{D_{\Phi}(G_{\Theta}(\mathbf{z}))}{1 D_{\Phi}(G_{\Theta}(\mathbf{z}))}$ 8:
- 9: end while