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The requirement of large number of samples for RL, only possible
in simulation, renders RL a model-based framework, we can’t
really rely (solely) on interaction in the real world (as of today)
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Pros of Simulation

 We can afford many more samples!
e Safety

 Avoids wear and tear of the robot

 We do not need to rely on demonstrations (often too many are
needed)

* Good at rigid multibody dynamics



Cons of Simulation

* Under-modeling: many physical events are not modeled.

 Wrong parameters. Even if our physical equations were correct, we
would need to estimate the right parameters, e.g., inertia, frictions
(system identification).

« Systematic discrepancy w.r.t. the real world regarding:
« oObservations
- dynamics
as a result, policies that learnt in simulation do not transfer to the real world

* Hard to simulate deformable objects (finite element methods are very
computational intensive)
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This lecture: SimZ2real

* Transfer across different dynamics
« online dynamics adaptation
* have a neural network to adapt the policy learnt in simulation to the real world
« grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations

ensemble of simulators and adapting their distribution to match dynamics in the real
world

* Transfer across different observations
- synthetic data randomization
- feature fine-tuning
- feature progression
- Supervised paired alignment between observation in simulation and real world

- Unsupervised observation distribution matching
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One-Shot Learning of Manipulation Skills with Online Dynamics
Adaptation and Neural Network Priors

Justin Fu, Sergey Levine, Pieter Abbeel

Algorithm 1 Model-based reinforcement learning with on-
line adaptation

I: for time step t =1 to 1" do

2:  Observe state xy

3:  Update /iy and A; via Equations (3) and (4)

4. Compute it = A — [Lt,&.?

5 Evaluate prior to obtain ®, g, m, and ng (see

Section V)

Update 3 and N as described in Equation (5)

. Compute 1 and X via Equation (1)

8:  Compute fy¢, futs fet- and Fy from p and X via
Equation (2)

9:  Run LQR to compute K;, k¢, and Qy s

10:  Sample u; from N (G + ke + Ke(x¢ — X¢), Q;}ht)

11:  Take action uy

12: end for

A




Combining Model-Based Policy Search with Online Model Learning for
Control of Physical Humanoids

[gor Mordatch, Nikhil Mishra, Clemens Eppner, Pieter Abbeel
Department of Computer Science and Engineering, University of California, Berkeley, CA, USA.

« Hierarchical control for better sim2real transfer: high-level
controllers determine the trajectory, low-level controllers produce

the required torques.

« Adapt a dynamics model online during actual task execution for
the low level controllers.



Combining Model-Based Policy Search with Online Model Learning for
Control of Physical Humanoids

Igor Mordatch, Nikhil Mishra, Clemens Eppner, Pieter Abbeel
Department of Computer Science and Engineering, University of California, Berkeley, CA, USA.
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Training the high level policy

e Sensory state: accelerations measured by IMUs, joint angles and their
velocities

* High level policy outputs joint angles and their velocities instead of
torques

* Learn policy in simulation using guidance from trajectory optimization:

mlnlmlze E C' XZ
6 X1 .

subject to V z,t - a'(X') = my(s'(X"))



Training the high level policy

Decompose into:
® trajectory optimizations

® regression

slides: Igor Mordatch



Training the high level policy
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Training the high level policy

Q00

Trajectory optimization used:
e contact invariant optimization, for

details: Discovery of complex

behaviors through contact invariant
optimization, Mordatch et al. 2012

Decompose into:
® trajectory optimizations m}én Z C(x") + ||mo(x") — u'|]?
t

® regression



Training the high level policy

Decompose into:
® trajectory optimizations

® regression melﬂz |7 (x"") — u"']|?
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L ow-level controllers

Learn local forward model:

s =g(s',u’)

1 _
Jt = miniJmize §||J[s u]t ! —s'||? + %HJ —J P

g(s’,u") = Jgs" +J,u’

Given desired \bar{s}Nt+1} by the high level policy, estimate control u\i:

1

u’(s"*') = minimize  ||g(s’,u) — _t“HQ
u 2
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Grounded Action Transformation
for Robot Learning in Simulation

Josiah P. Hanna, Peter Stone
Dept. of Computer Science
The University of Texas at Austin
Austin, TX 78712 USA
{jphanna,pstone} @cs.utexas.edu

« l|dea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.
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« l|dea: bring simulation closer to real world by learning parametrized actions
whose execution (in simulation) brings simulation state close to real world
state.

Assumes:

a modifiable simulator with a parametrized transition
probabilities Psim (+|$S, a; ®) where the vector ¢ can be changed to
produce in effect a different simulator

a policy learning procedure (optimize) in simulation
we can evaluate the policy in the real world (physical robot)
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Grounded Simulation learning

 NAO: humanoid robot with 25 degrees of freedom

* Uses an open source walk engine with 15 parameters (e.g. step
height, pendulum model height etc.)

 Simulators used:

- SimSpark http://simspark.sourceforge.net

» Gazebo .http://gazebosim.org/

(a) A Softbank NAO Robot (b) A simulated NAO in Gazebo (c) A simulated NAO in SimSpark


http://simspark.sourceforge.net
http://gazebosim.org/

Digression: evolutionary methods for policy search

« Optimization methods that searches for the optimum solution in a
search-space without using gradients

* Evolution strategy steps:
1. Generate a population of candidate solutions

2. Evaluate every individual in the population
3. Select parents from the fittest individuals
4.

Reproduce offspring of the next generation (Recombination &
mutation)

5. Repeat until a termination criterion is met



Evolutionary Methods

1. Generate a population of candidate solutions

y=1(x)

W




Evolutionary Methods

2. Evaluate every individual in the population

y=1(x)

ﬁtneSW




Evolutionary Methods

3. Select parents from the fittest individuals

y=1(x)

ﬁtneSW




Evolutionary Methods

4. Reproduce offspring of the next generation
(Recombination & mutation)

y=1(x)

e, S T




Evolutionary Methods

5. Repeat until a termination criterion is met

y=1(x)

W

Evaluate & Select X




Evolutionary Methods

5. Repeat until a termination criterion is met

y=1(x)

W

Reproduce X
Evaluate & Select




Evolutionary Methods

5. Repeat until a termination criterion is met

y=1x) Optimum

W

Reproduce X
Evaluate - Select - Reproduce

Terminate



Cross-Entropy Method

0

« Views U as a black box

* Ignores all other information
other than U collected
during episode

= evolutionary algorithm

Population: P, (6)

H
max U(¢) = max E > R(s¢)|mo]
t=0

CEM:
foriteri=1, 2, ...

for population membere =1, 2, ...
sample g(¢) ~ P, (0)
execute roll-outs under Ty(e)
store (019, U(e))

endfor
pltY) = arg maleogP (0®)

where € indexes over top p%
endfor

slides from John Schulam and Pieter Abbeel




Cross-Entropy Method

« (Can work embarrassingly well

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (Bhm et al., 2004) Istvan Szita and Andras Lorincz. “Learning
Reinforcement learning Tetris using the noisy cross-entropy method”.

Relational reinforcement ~50 Ramon and Driessens (2004) In: Neural computation 18.12 ( 2006 ) '

learning+kernel-based regression op. 2936-2941
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) '
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)

Linear programming + Bootstrap 4274 Farias and van Roy (2006)

Natural policy gradient ~6800 Kakade (2001)

CE+RL 21,252

CE+RL, constant noise 72,705

CE+RL, decreasing noise 348,895

Approximate Dynamic Programming Finally

Performs Well in the Game of Tetris [ NIPS 2013 ]
Victor Gabillon Mohammad Ghavamzadeh* Bruno Scherrer
INRIA Lille - Nord Europe, INRIA Lille - Team SequeL INRIA Nancy - Grand Est,
Team Sequel,, FRANCE & Adobe Research Team Maia, FRANCE
victor.gabillon@inria.fr mohammad.ghavamzadeh@inria.fr ~ bruno.scherrer@inria.fr John Schulman & Pieter Abbeel — OpenAl + UC Berkeley

slides from John Schulam and Pieter Abbeel



Closely Related Approaches

CEM:

foriteri=1,2, ...
for population membere =1, 2, ...
sample 6(¢) ~ P, (0)
execute roll-outs under Tge)
store (9(‘3), Ule))
endfor

(i+1) — arema log P,(0®
" rgmax } _log P (0”)

where € indexes over top p %
endfor

Reward Weighted Regression (RWR)

. Dayan & Hinton, NC 1997; Peters & Schaal, ICML 2007

{u”“) = argmax » ¢(U(e), Pu(0')))log PM(H(G))]

Policy Improvement with Path Integrals (PI?)

. PI2: Theodorou, Buchli, Schaal JMLR2010; Kappen, 2007; (PI2-CMA: Stulp & Sigaud ICML2012)

(i+1) _ AU (e)) log P, (8
{,u argmBX;eXp( (e))log P, (6')

Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

. CMA: Hansen & Ostermeier 1996; (CMA-ES: Hansen, Muller, Koumoutsakos 2003)

1Y

[(WU, £0+D) — argmax 3 w(U(e)) log (0 1, z)]

e

PoWER

. Kober & Peters, NIPS 2007 (also applies importance sampling for sample re-use)

{ P = 0 (Zw@ - u@)U(e)) / (Z U<e>) ]

e

slides from John Schulam and Pieter Abbeel
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Grounded Simulation Learning

* Let d(p, q) be a measure of similarity between probabilities p and g. GSL
grounds E.... by finding ¢ such that:

sim

¢* = arg min > d(Pr(7]0), Pram(7]0,¢)) (1)

T€D

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013



Grounded Simulation Learning

* Let d(p, q) be a measure of similarity between probabilities p and g. GSL
grounds E.... by finding ¢ such that:

sim

¢* = arg min > d(Pr(7]0), Pram(7]0,¢)) (1)
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L
¢* — aI'g qu;ln Z Zd(P(S;—I—ﬂS;aa;)?P¢(Srz—|—1|8;7ajﬁ))
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Grounded Simulation Learning

« Let d(p, q) be a measure of similarity between probabilities p and q. GSL
grounds E.; . by finding ¢™ such that:

¢* = arg m;n Z d(PT(7'|‘9), Prsim(T‘ev ¢))

TED
1. Execute policy g, on the physical robot to collect a data set of trajectories

, D.
2. Use D to find ¢* that satisfies Equation 1

3. Use optimize with J;,, and Py« to learn a set of candidate policies II. in
simulation which are expected to perform well on the physical robot

4. Evaluate each proposed @, € II. on the physical robot and return the
policy, 1, with minimal J

5. GOTO 1

Humanoid Robots Learning to Walk Faster: From the Real World to Simulation and Back, Farchy et al. 2013



Grounded Simulation Learning

¢ instead of parametrizing physical parameters of the simulator, parametrizes

actions transformations! .
¢* = argmin Y > " d(P(sjy s}, af), Pa(siyqlst, ap)
a ¢ T, €D t=0
t
Y
- el 91 f(s,8) | | real world
St S,
“ = =
Simulated F(seSy
Environment A .
a
t




Reminder: Froward and backward models

 Forward model: maps state and action to next state. With forward
models you can solve for action that leads to desired next state.

Sty Ut — St+1

 Backward model: maps state and next state to the action that
achieves the transition. Its output is used directly for control.

St,St+1 —7 Ay
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Grounded Simulation Learning

¢ instead of parametrizing physical parameters of the simulator, parametrizes
actions transformations!
argmln Z Zd St+1|st a;), P¢(St—|—1|st a;))

at €D t=0
\ 4
> Policy 9| #(s,8) | | real world
Ste1 l i
™ -1 S
Simulated F(SeS)
Environment A -
a
t

- A deterministic forward model of the real robot’s dynamics, f predicts the
effect of executing a; on the physical robot.

- An inverse dynamics model of the simulated robot uses the prediction
, §, to predict the action a; which will achieve Z; in simulation.

a: is executed in simulation. The resulting state transition will be similar to
the transition that would have occurred in the real world.



Algorithm 1 Grounded Action Transformation (GAT) Pseudo
code. Input: An initial policy, 8, the environment, £, a sim-
ulator, Esin, Smoothing parameter «, and a policy improve-
ment method, optimize. The function rolloutN(@, N) ex-
ecutes /N trajectories with 8 and returns the observed state
transition data. The functions trainForwardModel and
trainInverseModel estimate models of the forward and
inverse dynamics respectively.

|: function GAT
2: Oy 0
3: D.opor ¢ RolloutN(E, 0y, N)

: Dgin < RolloutN(FEgin, 8o, N)
f + trainForwardModel(Dyopot )

A

S5

6: fs_ii < trainInverseModel(Dg;p)

7: g(s,a) — af;i(s, f(s,a)) + (1 —a)-a
8.

9

0:

changed the simulator dynamics

Il < optimize(FEsin, 0. 9)
return argming; J(6)
end function

1




Simulation Grounding Results

Video
Method % Improve Failures Best Gen.
No Ground 11.094 7 1.33
Noise-Envelope 18.93 S 6.6
GAT 22.48 1 2.67
Method Velocity (cm/s) % Improve
0, 19.52 0.0
GAT SimSpark 6 26.27 34.58
GAT SimSpark 6- 27.97 43.27
GAT Gazebo 04 26.89 37.76

Noise envelope baseline: Add noise to the simulation dynamics to encourage
policy learning to find policies robust across environments.

Policies that work under a range of possible models, can be conservative and
work worse for that particular world


https://www.youtube.com/watch?v=2GaxCJi_mEc

This lecture: SimZ2real

* Transfer across different dynamics
« online dynamics adaptation
* have a neural network to adapt the policy learnt in simulation to the real world
« grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations

ensemble of simulators and adapting their distribution to match dynamics in the real
world

* Transfer across different observations
- synthetic data randomization
- feature fine-tuning
- feature progression
- Supervised paired alignment between observation in simulation and real world

- Unsupervised observation distribution matching



EPOPT: LEARNING ROBUST NEURAL NETWORK
POLICIES USING MODEL ENSEMBLES

Aravind Rajeswaran'!, Sarvjeet Ghotra?, Balaraman Ravindran?®, Sergey Levine*
aravrajl@cs.washington.edu, sarvjeet.13it236@nitk.edu.in,
ravi@cse.iitm.ac.in, svlevine(@eecs.berkeley.edu

1 University of Washington Seattle

2 NITK Surathkal

3 Indian Institute of Technology Madras

4 University of California Berkeley

|deas:

Consider a distribution over simulation models instead of a single one
for learning policies robust to modeling errors that work well under

many worlds”.

Progressively bring the simulation model distribution closer to the real
world. Bayesian modeling of the dynamics.

Hard model mining



Source domain distribution over MDPs

* MDPs differ in source and target domains w.r.t.
dynamics
rewards
initial state distributions
e and are identical w.r.t.
States

Actions



Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

- 71 - -

¢ p: simulator parameters
Ep~p |Ez E Y re(st,at) | p




Policy Search under model distribution

Learn a policy that performs best in expectation over MDPs in the source
domain distribution:

- [T-1 17 |
¢ p: simulator parameters
E vre(se,a) | p

Hard model mining

Learn a policy that performs best in expectation over the worst \epsilon-
percentile of MDPs in the source domain distribution

max / nam (6, p)P(p)dp st. Pnpm(0,P)<y)=c¢
7y JF@)



Hard model mining

Algorithm 1: EPOpt—e for Robust Policy Search

1 Input: ¢, 0y, niter, N, €
2 for iteration 1 = 0,1, 2, ...niter do

3 fork=1.2,...Ndo

4 sample model parameters py ~ Py

5 sample a trajectory 7, = {s¢, at, 1, St41 g from M (pz) using policy 7 (6;)
6 end

7 compute Q. = e percentile of {R(7x)}_,

8 select sub-set T = {7} : R(7x) < Q¢}

9 Update policy: #;+1 = BatchPolOpt(6;, T)

10 end
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Adapting the source domain distribution

Sample a set of simulation parameters from a sampling distribution S.
Posterior of parameters p_i:

Pp(p:
Ip(pi|7-k) X Ht ]P)(St-l-l — Sgi)l‘si(;k)agk)pz) X P<p.)

Fit a Gaussian model over simulator parameters based on posterior
weights of the samples



Source Distribution Adaptation
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Performance on hopper policies

trained on single source domains
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This lecture: SimZ2real

* Transfer across different dynamics
« online dynamics adaptation
- have a neural network to adapt the policy learnt in simulation to the real world
« grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations

ensemble of simulators and adapting their distribution to match dynamics in the real
world

* Transfer across different observations
- synthetic data randomization
- feature fine-tuning
- feature progression
- Supervised paired alignment between observation in simulation and real world

- Unsupervised observation distribution matching



Transfer from Simulation to Real World through
Learning Deep Inverse Dynamics Model

Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider,
Trevor Blackwell, Joshua Tobin, Pieter Abbeel, and Wojciech Zaremba
OpenAl, San Francisco, CA, USA

Policies search in simulation

Use neural network to map learned policy in source environment (simulation) to target
environment (real world)

Transfer good policies in one simulation to many other real world environments, where
a different inverse model takes care of the transfer to a particular target environment

Observation in source and target environment are assumed the same, which is not
always true



Deep Inverse Dynamic Model

o T_k.: Trajectory: {0} most recent k observations and k — 1
actions of target environment

* Tsource: (G00d enough policy in source environment

« ¢: Inverse dynamics is a neural network that maps source policy
to target policy

T—k: (l*—{(;ﬁ‘i::

target

— — — -

‘ Inverse Dynamics

Source:

Policy Forward Dynamics



Deep Inverse Dynamic Model

1. Compute source action Gsource = Tsource(T—k:) according to
target trajectory

2. Observe the next state given 7_x. and agoyrce:

3. Feed Onext and T_.to inverse dynamics that produce Gtarget

T—k: a*_f(/‘il)i-::

target

— — — -

‘ Inverse Dynamics

Source:

Policy Forward Dynamics



Architecture of Inverse Dynamic Neural Network

* |nput: previous k observations, previous k-1 actions, desired
observation for next time

* Qutput: the action that leads to desired observation

* Hidden layer: two fully connected hidden layer with 256 unit
followed by RelLU activation function



Simulation 1 to Simulation 2 Transfer |

* The experiments are performed on Simulators that can change
conditions of it’s environment

* The source and target environment are basically the same model
except gravity or motor noise

* The following four models are used for simulation

* Figure: From left to right are Reacher, Hopper, Half-cheetah, and
Humanoid



Simulation 1 to Simulation 2 Transfer ||

Variation of Gravity
Varying gravity

Reacher . . Hopper . HalfCheetah Humanoid
Adaptation with history 1.0 e A - 1’;,-"‘"'""""'"’“'" e —rr .r""f"'“hﬂ-d""‘;
Adaptation without history 0.8 - V ¥ b ?
Expert policy 0.6 4 \

o
W,
4-"“"-"

Qutput Error Control
Gaussian Dynamics Adaptation

Total reward

o ©
J
i
F

8% 30% 60% 90% 80%  100%  120% 80%  100%  120% 80%  100%  120%
Gravity



This lecture: SimZ2real

* Transfer across different dynamics
 online dynamics adaptation
- have a neural network to adapt the policy learnt in simulation to the real world
grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations
ensemble of simulators and adapting their distribution to match dynamics in the real world
* Transfer across different observations
- feature fine-tuning
- feature unsupervised pretraining
 synthetic data randomization
- feature progression
«  Supervised paired alignment between observation in simulation and real world

Unsupervised observation distribution matching



Finetuning Deep (Visual) Features

Common practice: we download a pretrained model and adapt it to our task

Finetuning GoogleNet for diabetic retinopathy prediction

Fix first .
2 Fine-tune Add new
N all other layer for
binary
Conv o
layers classification
layers
___Imagenet GoogleNet
A I U D Sk S, o
Hat = 1 gg a0, fagglgglle
anghithab i
ST R T L) |

Pooling

Other



Finetuning Deep (Visual) Features

Common practice: we download a pretrained model and adapt it to our task

Finetuning GoogleNet for diabetic retinopathy prediction
i first Fine-tune Add new
2
N all other layer for
binary
Conv e e
layers classification
layers

Pros: Straightforward to do
Cons: not great transfer due to difference in image statistics/ dataset biases

Imaaenet Policy Learning




Finetuning Deep (Visual) Features

 How many layers to finetune? For how long to fine-tune (how
many iterations)?

« Catastrophic forgetting

e ->Learning to fine-tune (later lecture)



This lecture: SimZ2real

* Transfer across different dynamics
 online dynamics adaptation
- have a neural network to adapt the policy learnt in simulation to the real world
grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations
ensemble of simulators and adapting their distribution to match dynamics in the real world
* Transfer across different observations
feature fine-tuning
- feature unsupervised pretraining
 synthetic data randomization
- feature progression
«  Supervised paired alignment between observation in simulation and real world

Unsupervised observation distribution matching



Pretrain Deep (Visual) Features using self-supervision

Less Common practice: use an unsupervised pretaining task to pretrain (or
finetune) visual features, e.g., using feature slowness or using inverse dynamics
models

features to be invariant to
viewpoint changes, metric predict the push

predict the tactile profile Iearning direction

\ ) o
b 2 7
.. 0\

&t
Ld g |

The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.



Pretrain Deep (Visual) Features using inverse models

Predict Poke

Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al.
The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.



Pretrain Deep (Visual) Features using slowness

min. |[feat_i-feat_j||

CNN |<-->| CNN
! !
feat_| feat_|

The Curious Robot: Learning Visual Representations via Physical Interactions, Pinto et al.
Learning to Poke by Poking: Experiential Learning of Intuitive Physics, Agrawal et al.



This lecture: SimZ2real

* Transfer across different dynamics
 online dynamics adaptation
- have a neural network to adapt the policy learnt in simulation to the real world
grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations
ensemble of simulators and adapting their distribution to match dynamics in the real world
* Transfer across different observations
feature fine-tuning
- feature unsupervised pretraining
 synthetic data randomization
- feature progression
«  Supervised paired alignment between observation in simulation and real world

Unsupervised observation distribution matching



Sim-to-Real Robot Learning from Pixels with
Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothorl, Nicolas Heess,
Razvan Pascanu, Raia Hadsell

Google DeepMind
London, UK

* Add new capacity as you see new domains



Progressive Nets (grow a brain)

simulation | reality
output, : output, output, }l'gk) —f (I,Vi(k)hz(k)l n Z Ui(k:j)hz(j)l)
j j<k
n,O I xe e f ( J:) — Ina,x((): ;L')
] j/
| i;ipllf

* Freeze previously learnt parameters when new ones are added, else the initie
bad gradients will destroy them.

« Each column trains a different policy
« Columns in progressive networks are free to reuse, modify or
ignore previously learned features via the lateral connections.

Columns of real robot have much smaller capacity that columns trained on
simulation



(CAD)’RL: Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi! and Sergey Levine?

- Collision
A with wall

] | L 3T 1 ]

Collision

Environment with Furniture

feedback
t=0

* reset at any state!

* Exhaustive policy rollouts: all actions are tried out for a horizon of 5
steps, to get the probability of collision in each state and action



Learning control VS learning a forward model

1.0 !
Straight
| -R-S
v 0.8 FS-pred |-
=y 2
g === (CAD) RL
)
o
206
r
2
-
()
v 0.4} -
“._ R e —
c |
=
@
S 0.2
0 200 400 600 800 1000 1200

Flight distance (meter)

LRS (left-right-straight) baseline: given an image predict direction of motion. Not
fine enough around corners, also, you cannot choose your direction of motion.

Instead, here we predict probability of collision given an action, which can be
combined with a diverse set of goals, e.g., track the human.



(CAD) RL

Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi Sergey Levine

University of Washington University of California, Berkeley




This lecture: SimZ2real

* Transfer across different dynamics
 online dynamics adaptation
- have a neural network to adapt the policy learnt in simulation to the real world
grounding simulators: learning to bring their dynamics closer to real world dynamics using:
Parametrized action transformations
ensemble of simulators and adapting their distribution to match dynamics in the real world
* Transfer across different observations
feature fine-tuning
- feature unsupervised pretraining
 synthetic data randomization
- feature progression
- Supervised paired alignment between observation in simulation and real world

- Unsupervised observation distribution matching



Domain Adaptation

Adapting Deep Visuomotor
Representations with Weak Pairwise
Constraints

Eric Tzeng*!, Coline Devin*!, Judy Hoffman'!, Chelsea Finn®,
Pieter Abbeel!, Sergey Levine!, Kate Saenko?, Trevor Darrell!

1 University of California, Berkeley
2 Boston University

source target image pairs

Use both domain confusion (distribution
matching) between source and target
domains, as well as image pairs, for
regularizing the learnt visual feature
representation




Domalin adaptation

task loss: object pose estimation, so that we learn features relevant to objects
presents that can be used in GPS

real-syn
weak

pairs

real-syn
non-aligned
pairs

task
loss

pairwise
loss

t confusion
s loss

pose regression convnet
(shared weights)

task
loss

| ¢

O}

) Qrepr)

- Sl

70

repr) 0




Domalin adaptation

task loss: object pose estimation, so that we learn features relevant to objects
presents that can be used in GPS

..... taSk
loss
real-syn
weak irwi (7) (9)
pairwise - (9). e ).
pairs T Hf(is agrepr) f(JJT aerepr> 0
negative cross entropy betweer
the uniform distribution and the
distribution over domains
real-syn N :
; 1
non-aligned ] corl'(f::;'on - > Zﬁlog qa(x, 0D, Orepr)
pairs re(zsUzr) d

task
loss

Q(LL'; Op: Hrepr) = SOt.tnlaX(egf(l"; gl‘epr))

pose regression convnet
(shared weights)

tries to assign each image
to the domain is comes from



Weakly supervised domain adaptation

Mine image pairs as you go

Algorithm 1 Learning domain-invariant image features

1: Collect xs source domain images with labeled object pose

2: Collect z7 target domain images

3: Minimize L4(xs, ¢s;04, Orepr) + Alcont(Ts, T, 0D Orepr) With respect to 64, Orepr
4: for Ig) in xT do

D! = arg min; ||fconv1(-’17g); Hrepr) — fconvl(xj(lg)§ 9repr)||2

6: Add (i*,7) to P

7: end for

8: Minimize L(xs, ¢s,xT, dT, P,0D; 04, Orepr) With respect to 04, Orepr




Task: match hook position while ignoring the arm

Synthetic alignment 1 Synthetic alignment 2 Synthetic alignment 3 Synthetic alignment 4




Adaptation results

Table 3. Performance of visuomotor tasks trained using domain alignment with
weakly supervised pairwise constraints. We report the percentage of successful at-
tempts at placing a loop of rope on a hook after training with 12 iterations of GPS.
Each experiment was repeated 3 times.

Method # Sim  # Real (unlabeled) Success rate
Synthetic only 4000 0 38.1% + 8%
Autoencoder (100) 0 100 28.6% £ 25%
Autoencoder (500) 0 500 33.2% £15%
Domain alignment with randomly 4000 100 33.3% +16%
assigned pairs

Domain alignment with weakly 4000 100 76.2% + 16%

supervised palrwise constraints

Oracle 0 500 (labeled) 71.4% + 14%




Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Estimating or Propagating
Gradients (cont.)

Katerina Fragkiadaki




Architecture search with REINFORCE

NEURAL ARCHITECTURE SEARCH WITH
REINFORCEMENT LEARNING

Barret Zoph! Quoc V. Le
Google Brain
{barretzoph, gvl}@google.com

Compute gradient of p and

ttttttttttttt



Motivation for Architecture Search

« Can we try and learn good architecture automatically replacing
human intuition?

80 .
751 -
Pl conca
%\70- | | [ 7 v
| | = B O
nl [ <HET I
50 | |
R 6*.\@’;@ h ::\e :?’632:@;&6& ;:ggg'&goo;soo“m s o =
Google Canziani et al, 2017 Two layers from the famous Inception V4 computer vision model.

Szegedy et al, 2017



Neural Architecture Search

« Specify the structure and connectivity of a neural network by using
a configuration string

o [“Filter width: 5”, “Filter Height: 3”, “Num Filters: 24”]

« Use a RNN (“Controller”) to generate this string that specifies a
neural network architecture

« Train this architecture (“Child Network”) to see how well it performs
on a validation set

« Use reinforcement learning to update the parameters of the
Controller model based on the accuracy of the child model



Neural Architecture Search for Convolutional Networks

Softmax classifier Controller RNN

N\

Number| Filter Filter Stride Stride Number Filter
" |of Filters|, | Height [, | width [\ | Height [\ | Width [ |of Filters|, | Height [\

NN AN
(A R O N O O O A

LA LA L A | A LA L A LA | A

Layer N-1 / Layer N Layer N+1

Embedding




Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

S
J(0c) = Ep(ay.16.) | R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions



Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

S
J(0c) = Ep(ay.16.) | R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions

T
VQCJ(QQ) = Z EP{M:T;EJC} [ Vac l'Dg P(ﬂ'tla(t—l}:l; QC)R}
=1



Training with REINFORCE

Accuracy of architecture on
Parameters of Controller RNN held-out dataset

S
J(0c) = Ep(ay.16.) | R]

/

Architecture predicted by the controller RNN
viewed as a sequence of actions

T
VQCJ(QQ) = Z EP{M:T;EJC} [ Vac l'Dg P(ﬂ'tla(t—l}:l; QC)R}
=1

[ BT £
1
Number of models in minibatch——— m ;_1 ; Vo, log P(at|a—1).1;0c)Ri
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Neural Architecture Search fro CIFAR-10

Weight Matrices

//\

P(Layer j is an input to layer i) = sigmnid(uTtaHh(W’pmﬂ * h; + Weyrr * hi))
N-1 skip connections

—

Number| [ Anchor | | Filter | [ fier | [ stride | | stride | [ Anchor | J?ynﬁgér Filter |
 |of Filters]: Point | H/e-ight/' Width |\ | Height || Width [, | Point [} f Filters|, | Height [\

R e T T O N O A

—

> > > > > o
L™ oI s B ¢ > o s s« s ¢
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Layer N-1 Layer N Layer N+1



Neural Architecture Search fro CIFAR-10

Model ' Depth  Parameters | Error rate (%)
Network in Network (Lin et al., 2013) - - 8.81
Softmex All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - o r
Highway Network (Srivastava et al., 2015) - - 132
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 532
with Dropout/Drop-path 21 38.6M 4.60
el ResNet (He et al., 2016a) 110 1.7M | 6.61
: _ ResNet (reported by Huang et al. (2016c)) 110 1.7M | 6.41
e ResNet with Stochastic Depth (Huang et al., 2016¢) 110 1.7TM 5.23
o 1202 10.2M 491
7w Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
== 28 36.5M 4.17
== < ResNet (pre-activation) (He et al., 2016b) 164 1.7TM 5.46
= 1001 10.2M 4.62
- DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.OM 5.24
@ o DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
" DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3174 —

DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46

Neural Architecture Search v1 no stride or pooling 13 4.2M 5350 0

image Neural Architecture Search v2 predicting strides 20 25M 6.01 3) /0 faSter

Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

Best result of evolution (Real et al, 2017): 5.4%
Google Best result of Q-learning (Baker et al, 2017): 6.92%



Recurrent Cell Prediction Method

« Created a search space for search over RNN cells like the LSTM
or GRU

 Based our search space off the LSTM cell in that we have
recurrent state and cell

elern_mult /

/ tanh /
i yadd
IdEf‘Itlt}"

sigmmdg et H'u

’\'E""'_“"'“'t (bidentity
1 \

tanh Qsigmmd ,'Qeiem_mult
sigmoi '

\
add add ad/n{;)add \
<\/ k!
TN \
LA
t-1 C

3
Xy




Recurrent Cell Prediction Method

Cell Search Space Controller RNN

Add |
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Penn Ireebank Results
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Penn Ireebank Results

Model | Parameters  Test Perplexity
Mikolov & Zweig (2012) - KN-5 2M* 141.2
Mikolov & Zweig (2012) - KNS + cache 2M* 125.7
Mikolov & Zweig (2012) - RNN 6M* 124.7
Mikolov & Zweig (2012) - RNN-LDA TM* 1137
Mikolov & Zweig (2012) - RNN-LDA + KN-5 + cache oM* 02.0
Pascanu et al. (2013) - Deep RNN 6M 107.5
Cheng et al. (2014) - Sum-Prod Net sM* 100.0
Zaremba et al. (2014) - LSTM (medium) 20M 82.7
Zaremba et al. (2014) - LSTM (large) 66M 78.4

Gal (2015) - Vanational LSTM (medium, untied) 20M 79.7

Gal (2015) - Vanational LSTM (medium, untied, MC) 20M 78.6

Gal (2015) - Variational LSTM (large, untied) 66M 9.2

Gal (2015) - Variational LSTM (large, untied, MC) 66M 73.4

Kim et al. (2015) - CharCNN 19M 78.9
Press & Wolf (2016) - Variational LSTM, shared embeddings 5SIM T3.2
Merity et al. (2016) - Zoneout + Variational LSTM (medium) 20M 80.6
Merity et al. (2016) - Pointer Sentinel-LSTM (medium) 21M 70.9

Inan et al. (2016) - VD-LSTM + REAL (large) SIM 68.5

Zilly et al. (2016) - Variational RHN, shared embeddings 24M 66.0 !
Neural Architecture Search with base 8 32M 67.9 2x as fast
Neural Architecture Search with base 8 and shared embeddings 25M 64.0
Neural Architecture Search with base 8 and shared embeddings 54M 62.4




Neural Optimizer Search

Sample update rule U
with probability p

[ ¥

Trains the child network
The controller (RNN) with update rule
U to get accuracy R

\ y . J

l Jo

Compute gradient of p and Use validation

scale it by R to update set signal
the controller




Architecture search with Pathwise derivatives

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer', Azalia Mirhoseini*"', Krzysztof Maziarz*?, Andy Davis', Quoc Le', Geoffrey
Hinton' and Jeff Dean'

'Google Brain, {noam,azalia,andydavis,qvl,geoffhinton,jeff} @google.com
?Jagiellonian University, Cracow, krzysztof.maziarz @student.uj.edu.pl

As the training data increases, model capacity increases to keep accuracy
high.

This in turn increases cost of every example, at both train and test time.
Can we do better?

Yes, with conditional computation: specialize the model per example, not all
examples will share the same model

We need to learn: 1) how examples will be distributed to models 2) the models
themselves



Per example routing

; /FdnE layer
G:R}?i Gl:“}n-l
MoE '
layer Expert 1 Expert
. Gating
b Network _/J




The gating function

”ﬂnE layer
Gix),| |Gix),,y

G,(z) = Softmax(xz - W,)

G(z) = Softmax(KeepTopK(H (z), k))

H(z); = (z - W,); + StandardN ormal() - Softplus((z - Whoise )i)

KeepT'opK (v, k); = {

Vi if v; is in the top k elements of v.
—oo  otherwise.

3)

4)

)



The gating function

/M

Gix),

oE layer

Gixl,

Expert 1

G,(z) = Softmax(xz - W,)

G(x) = Softmax(Keepl'opK(H (x), k))
H(z); = (z - Wy)i + StandardN ormal() - Softplus((x - Whoise )i)

Vi if v; is in the top k elements of v.

KeepT'opK (v, k); = {—oc otherwise



The gating function

>

Gix),

MoE layer

Gixl,

Expert 1

G,(z) = Softmax(xz - W,)

G(x) = Softmax(Keepl'opK(H (x), k))
H(z); = (z - Wy): + StandardN ormal() - Softplus((z - Whoise )i)

Vi if v; is in the top k elements of v.

KeepT'opK (v, k); = {—oc otherwise

this behaves like variance (positive)



Per-Example Routing

/l':fInE layer N
1 {
_,.[ = __,[ ) }_,
i ]
\ 4
Table 7: Perplexity and BLEU comparison of our method again -art methods on

the Google Production En— Fr dataset.

Model Eval Eval Test Computation Total Training
Perplexity | BLEU | Perplex) BLEU per Word #Parameters Time

MoE with 2048 Experts 2.60 3727 2.69 36.57 100.8M 5.600B 1 day/64 k40s

GNMT (Wu et al., 2016) 2.78 35.80 2.87 35.56 214.2M 246.9M 6 days/96 k80s



L anguage generation using REINFORCE

Adversarial Learning for Neural Dialogue Generation

Jiwei Li', Will Monroe!, Tianlin Shi !,
Sébastien Jean?, Alan Ritter® and Dan Jurafsky !

Stanford University, CA, USA
’New York University, NY, USA
3Ohio State University, OH, USA
Jjiwell, wmonroed,tianlins, jurafsky@stanford.edu
sebastiendcs.nyu.edu
ritter.1492@osu.edu

Actions: words samples (softmax over the vocabulary)

Reward (at each subsequence generated): confusion of a discriminator

(likelihood of being real), which is trained to tell apart generated from real
sentences

‘](0) — Eyrvp(y|:c)(Q+({xa y}>|9)

VJ(0) =) (Q(x,Yy) — bz, Yy))

t

Vlog p(y¢|z, Y1:6-1)



L anguage generation using REINFORCE

For number of training iterations do
For i=1,D-steps do
Sample (X,Y) from real data
Sample Y ~ G(-|X)
Update D using (X, Y) as positive examples and

(X, )A/) as negative examples.
End

For i=1,G-steps do
Sample (X,Y) from real data
Sample Y ~ G(+|X)
Compute Reward r for (X, Y) using D.

Update G on (X,Y) using reward r
Teacher-Forcing: Update G on (X,Y')
. End
End




Language generation using pathwise derivatives

GANS for Sequences of Discrete Elements
with the Gumbel-softmax Distribution

Matt J. Kusner José Miguel Hernandez-Lobato
Alan Turing Institute University of Cambridge
University of Warwick

exp(h;)
ZJI'{:1 exp(h;)

softmax(h)|, =

y = one_hot(arg max(h; + g;))

2

y = softmax(1/7(h +g)))



Language generation using pathwise derivatives

Algorithm 1: Generative Adversarial Network [14]

data: {xy,...,x,} ~ p(x),
Generative LSTM network Gg
Discriminative LSTM network D

while loop until convergence do

Sample mini-batch of inputs B = {xp,,...,Xp_ }
Sample noise N = {zn,,...,2ZN, }
Update discriminator ® = argming —— >z log Dg(x)— = > log(1 —Dg(Ge(2)))

Ds(Go(z))
—Da(Geo(z))

Update generator © = argming — =+ »___ log 5
end while

WX JxnhEwe




