
10-703 Deep RL and Controls
Homework 2

Tensorflow, Keras, and Cluster Usage

Devin Schwab

Spring 2017

Table of Contents

Homework 2

Cluster Usage

Tensorflow

Keras

Conclusion

DQN

I This homework is signficantly more work than the previous
homework

I Lots of coding
I Training and experiments will take a long time

I If you do not start early you will not finish on time

Code Outline

I We have provided a suggested outline for how to structure
your implementation

I Feel free to modify or disregard this template

I You should use Tensorflow and/or Keras in your
implementation

I If you use libraries other than those provided in the
requirements.txt file, you should state so in your writeup.

Table of Contents

Homework 2

Cluster Usage

Tensorflow

Keras

Conclusion

Pittsburgh Supercomputing Center (PSC)

I Pittsburgh Supercomputing Center (PSC) is a joint effort of
CMU and University of Pittsburgh

I They provide a number of large-scale, supercomputing clusters

I We have an educational grant for the students of this class to
use the Bridges machines

I Bridges is the newest cluster and it provides a number of k80
and P100 GPUs

I You should read over the user-guide for more details
https://www.psc.edu/index.php/users

https://www.psc.edu/index.php/users

Warnings

I We have a fixed allocation for all students in the class

I You may use this allocation for your projects and homeworks
BUT

I You must be respectful and share the cluster resources

Warnings

I We have a fixed allocation for all students in the class

I You may use this allocation for your projects and homeworks
BUT

I You must be respectful and share the cluster resources

Warnings

I We have a fixed allocation for all students in the class

I You may use this allocation for your projects and homeworks
BUT

I You must be respectful and share the cluster resources
I Don’t run jobs you don’t need to
I Only use shared nodes
I Minimize use of interactive sessions

Warnings

I We have a fixed allocation for all students in the class

I You may use this allocation for your projects and homeworks
BUT

I You must be respectful and share the cluster resources
I Don’t run jobs you don’t need to
I Only use shared nodes
I Minimize use of interactive sessions

We will be monitoring

If we see excesive usage, we will restrict your access.

Homework 2

I Given the limited cluster resources please do not run your
homework on the cluster until you have debugged it on your
own machine

I You can run for a couple hundred thousand iterations on your
own CPU/GPU and see if the network is converging

I Once you see an upward trend you can run your full
experiments on the cluster

Logging in

I Over the next few days you will be given your user logins
I In most cases, the username will match the XSEDE portal

login
I If your account name was already taken then you will get a

different username

I Your password is the same as your XSEDE portal login

SSHing In

I All of your interactions with the cluster will be over SSH
I ssh -p 2222 <username>@brdiges.psc.edu

I You must use port 2222
I You have to use password based authentication

SSH Config

I It is recommended that you add the following snippet to your

~/.ssh/config file

Host bridges

Hostname bridges.psc.edu

User <username>

Port 2222

I This will let you login with the command ssh bridges

~/.ssh/config

Submitting Jobs

I When you ssh in you end up in a normal Linux home directory

I You can run basic commands here, copy files around, etc.

I Do NOT start any large computations here!

I To run a job you need to submit it into the job queue

Submitting Jobs

I There are three main commands to interact with the jobs
queue:

I sbatch — Used to submit new jobs to the job queue
I squeue — Used to check on status of jobs in the queue
I scancel — Used to cancel a job in the queue

Job Files

I Each job is specified via a batch script

I Basically a bash script with some extra commands at the top

I We have included a sample job file with the homework release.

Example Job File

#!/bin/bash

#SBATCH -N 1

#SBATCH -p GPU-shared

#SBATCH --ntasks-per-node 2

#SBATCH --gres=gpu:k80:1

#SBATCH -t 10:00:00

this will request 2 CPU cores, an one k80 on a shared GPU node

if the job is still running after 10 hours, it will be automatically killed.

set -x # echo commands to stdout

set -u # throw an error if unset variable referenced

set -e # exit on error

Example Job File

helper vars

PYLON1=/pylon1/$(id -gn)/$USER

PYLON2=/pylon2/$(id -gn)/$USER

module load cuda/8.0

select which python module you want 2/3

module load python3

module load python2

switch to pylon1

NOTE: Files in this directory are deleted when 30 days old

pushd $PYLON1

turn on the virtualenv

source $PYLON2/my-virtualenv/bin/activate

run the experiment script

python $PYLON2/deeprl_hw2/dqn_atari.py --env Breakout-v0

File Systems

I There are three main storage systems on Bridges:
I Your home directory

I 10 GB limit
I Backed up daily
I Available from all machines
I Good for source code, temp files, job files, etc.

I Pylon1
I Part of allocation quota
I Faster IO than home dir
I Files older than 30 days are deleted!
I Located at /pylon1/$(id -gn)/$USER

I Pylon2
I Part of allocation quota
I Not backed up!
I No timelimit on storage
I Do not use for working space for running jobs
I Located at /pylon2/$(id -gn)/$USER

Software Modules

I Bridges provides a number of built in software packages

I Check the website for a full listing
I Or run the module avail <search string> command

I e.g. module avail python3

Setting up Virtualenv

I There is a Tensorflow module but:
I Currently, no Python 3 version
I Version 1.0 not on cluster

I I use a virtualenv for my jobs

I The commands are the same as for the first homework

I You can store the virtualenv in your home dir, pylon1 or
pylon2

Setting up Virtualenv

module load python3

virtualenv deeprl-hw2-gpu

source deeprl-hw2-gpu/bin/activate

pip install tensorflow-gpu

deactivate

Running the Job File

I Once you have the job file created just run the command

sbatch example.job

Checking execution

I squeue can be used to check on running jobs

I squeue -u $USER will show you all of your submitted jobs

I scancel $JOBID will cancel the specified job id
I stderr and stdout are saved in a file called

slurm-$JOBID.out in your home dir
I cat slurm-$JOBID.out
I tail -f slurm-$JOBID.out to follow output

Table of Contents

Homework 2

Cluster Usage

Tensorflow

Keras

Conclusion

What is Tensorflow?

I An open source machine learning library from Google

I Great for Neural Networks

I Designed for general computations

I Automatically computes gradients

Compared to Other Frameworks

I There are a ton of other frameworks available but Tensorflow
has a few pros

I Officially supports C++ and Python
I The tooling is better: Tensorboard, TF Debugger, etc.
I Easy to deploy models onto different hardware (phones,

robots, etc.)
I Designed to work with multiple GPUs and distributed systems

Installing

I As of 1.0 just install one of the following packages with pip:
I tensorflow
I tensorflow-gpu

Tensor

I Represents a multi-dimensional array of some type

I Most important datatype in Tensorflow programs

I Tensors are combined with operations to create new tensors

I All of the tensors are part the computation graph

Computation Graphs

I Computations are organized into fixed graphs1

I Creating operations, variables, etc to the graph does NOT
execute them immediately

I They are simply added to the graph for later execution in a
session

I Parts of the graph can be decoupled
I You can execute any subgraph, provided you specify all

required input values
I You can mix and match Python/Numpy with tensorflow graph

computations

1Now they have some dynamic graph support.

Graph Example

Basic TF Program Structure

I Tensorflow programs generally follow this structure:

1. Build computation graph
2. Execute computation graph

Sessions

I To execute a graph, you need to be in a Session

I Sessions can be run on CPUs, GPUs or combinations

I Multiple sessions can share the same graphs, but have
different variable values

I Multiple ways create a session:
I sess = tf.InteractiveSession()

I with tf.Session() as sess:

I To run a tensor:
I output = sess.run(my_tensor)

I The output will match the datatype and shape of my tensor

Example

import tensorflow as tf

create the tensor gamma

gamma = tf.constant(.99, tf.float32, name='gamma')

open a session called sess

with tf.Session() as sess:

execute the tensor gamma in the session 'sess'

print(sess.run(gamma))

The output will be: .99

Variables

I Tensors which have mutable values

I b = tf.Variable(tf.zeros([10]), name='bias')

I Must have a unique name
I If no name provided, then TF will generate one
I Highly recommended that you name them!

I Variables must be initialized in every session before use!
I sess.run(tf.global_variables_initializer())

Name Scopes

I All tensors exist in some namescope

I You can set the names of most operation outputs by providing
the name argument

I Slashes separate pieces of the naming hierarchy
I “/name1/W” is different from “/name2/W”

I When initializing groups of tensors that should be in the same
name scope, use the tf.name scope function:

with tf.name_scope('dense'):

W = tf.Variable(

tf.zeros([784, 10]), name='W')

b = tf.Variable(tf.zeros([10]), name='b')

Placeholders

I Used for dynamic graph inputs such as:
I batch inputs
I target values for batch
I Variable to control test/train behavior

I input = tf.placeholder(tf.float32, shape=[None, 784])

I Must specify data type
I Shape is optional, but better to specify if you know it
I Unknown shape dimensions can be marked None

Basic Dense Layer

def create_fc_layer(input, num_neurons, activation, name):

input_shape = input.get_shape()

with tf.name_scope(name):

W = tf.Variable(

tf.random_normal(

[input_shape[-1].value, num_neurons], stddev=0.35),

name='W')

b = tf.Variable(tf.zeros([num_neurons]), name='b')

preactivation = tf.matmul(input, W) + b

output = activation(preactivation)

return output, preactivation, [W, b]

Stacking the Layers

def create_single_hidden_layer_net(net_name):

with tf.name_scope(net_name):

input = tf.placeholder(tf.float32,

shape=[None, 784], name='input')

h_out, h_pre, h_vars = create_fc_layer(input,

100,

tf.sigmoid,

'hidden1')

out, out_pre, out_vars = create_fc_layer(h_out,

10,

tf.nn.softmax,

'output')

return input, out

Executing the Layers

output = sess.run(out,

feed_dict={input: np.random.randn(10, 784)})

Setting a Loss Func

def create_loss(predicted):

target = tf.placeholder(

tf.float32, shape=predicted.get_shape(), name='target')

with tf.name_scope('cross_entropy'):

cross_entropy = tf.reduce_mean(-tf.reduce_sum(

target * tf.log(predicted), reduction_indices=[1]))

return target, cross_entropy

Optimizers

I TF train provides many optimizers

I All optimizers follow the same API, but some may have
internal variables you need to save/reload

I Calling minimize on a tensor adds operations to the graph
that run backpropagation wrt that tensor

I To update weights, only need to run the returned training
operation

optimizer = tf.train.GradientDescentOptimizer(0.01)

train_op = optimizer.minimize(cross_entropy)

sess.run(train_op, feed_dict={input: batch_input,

target: batch_targets})

Saving Your Model

I Use the tf.train.Saver class

I You can specify specific variables to save, or save them all
I Only saves the variable values by default!

I If you change your graph structure and then try to reload,
things may not work

I You can save a MetaGraph instead, which includes the graph
structure

saver = tf.train.Saver()

saver.save(sess, '/tmp/checkpoint')

Tensorboard Summaries

I Tensorboard is a visualization and debugging tool for TF
programs

I Lets you plot scalar and multidimensional values

I Gives you an interactive display of the computation graph

I Can even show images and play audio inputs/outputs to the
network

writer = tf.summary.FileWriter('logs', sess)

loss_summary_op = tf.summary.scalar('cross_entropy', cross_entropy)

summary = sess.run(loss_summary_op, feed_dict)

writer.add_summary(summary, global_step=1)

Tensorboard Demo

Table of Contents

Homework 2

Cluster Usage

Tensorflow

Keras

Conclusion

What is Keras?

I High level API for TF (and other libraries)

I Pure Python API

Basic Layers

I Provides a ton of different layers such as:
I Dense
I Activation
I Dropout
I BatchNormalization
I Convolution2D

I Train/Test controlled by the
keras.backend.learning phase() tensor

I Pass this in via the feed dict with 1 for training and 0 for test
I feed_dict={keras.backend.learning_phase(): 1}

Functional Model API

I Can define generic network layouts (vs Sequential model)
I Provides nice API for

I Inference — predict on batch
I Training — train on batch
I All trainable weights — trainable weights attribute
I Any special updates — updates attribute

Fit and Evaluate Methods
Also provides a fit and evalute method, but I recommend not
trying to use these. They’re designed for fixed datasets of like
image classifiers.

Example

def create_model(input_size, output_size):

input = Input(shape=(input_size,), name='input')

with tf.name_scope('hidden1'):

hidden1 = Dense(100, activation='sigmoid')(input)

with tf.name_scope('output'):

output = Dense(10, activation='softmax')(input)

print(model.summary())

return model

Optimizer

I Provides a number of optimizer implementations
I All of them support gradient clipping out of the box

I adam = keras.optimizers.Adam(lr=.001)

I get updates method is the Keras version of TF’s minimize

How to train?

I Keras models must be compiled which:
I initializes all model vars in the session
I Adds optimization updates to graph
I Adds metrics operations to the graphs

I model.compile(optimizer='adam', loss='mse')

I For this assignment you would need to specify your own loss
function

Saving and Loading a Model

I You can get a dictionary defining the model structure with
get config

I This is a useful method for cloning a model (such as making a
target network)

I You can save that dictionary using pickle or any other save
method in python

I You can construct a new model from that dictionary with the
model from config

I To save/reload weights just use the save weights and
load weights functions

Backend functions

I Keras can also work with Theano as a backend

I To write code that can work with either Theano or
Tensorflow, use the backend functions

I import keras.backend as K

I Most tf functions have an equivalent function in the K module

Manually running a model/layers

I You can use keras just to create the models and then train
and use the model with regular TF code.

I This means you can add summary operations for Tensorboard
logging just like in the pure TF example

I If you want to manually run training operations for a model
you need to:

I Make sure that the updates attribute is run during the session
execution. This handles dropout and batchnorm layers

I Pass in the K.learning phase() feed dict value
I Run the output operations from the optimizer get updates

method.

Table of Contents

Homework 2

Cluster Usage

Tensorflow

Keras

Conclusion

Conclusion

I Start your homework early!
I Post questions on piazza

I We will try and answer as soon as we can

I Don’t waste cluster resources
I Debug on your own machine, not on the cluster

I Refer to the TF and Keras docs for more info and in-depth
examples

I Complete examples that go along with these slides will be
posted to the website

References

I tensorflow.org

I keras.io

I https://www.psc.edu/index.php/bridges/user-guide/

connecting-to-bridges

tensorflow.org
keras.io
https://www.psc.edu/index.php/bridges/user-guide/connecting-to-bridges
https://www.psc.edu/index.php/bridges/user-guide/connecting-to-bridges

	Homework 2
	Cluster Usage
	Tensorflow
	Keras
	Conclusion

